Computational fluid dynamics of small insects

Carol Knight
Major in Biology and Mathematics
Dr. Laura Miller, Department of Mathematics
Project Background and Goals

Scientists have been studying flight intensively for the past century, however there has been a focus on larger flyers such as birds and large flies. The realm of tiny insect flight remains relatively unstudied.

Background information:
• Reynolds number is the represented by the equation:

\[
Re = \frac{VL}{m} = \frac{\text{inertial}}{\text{viscous}}
\]

• The smaller the Reynolds number the smaller in the insect
• Tiny insects fly like they are swimming in the air.
• Fruit flies fly at about Re=120 and thrips fly at Re=10.

The purpose of my project is to see if tiny insects with Reynolds numbers from 1-100 could generate vertical force from drag rather than aerodynamic lift.
Project Results

• We were able to use a computational method to simulate the wing beats and to calculate the drag and lift produced by a wing beat.
• Wing motions tested included the following:

 ![Simple up-down wing motion](image)

 ![Wing motion including angle of stroke plane](image)

• Our results showed that as Re increases, the vertical force produced by drag also increases.
 • We concluded that tiny insects do not use drag to produce vertical flight
• We also found that the angle of the stroke plane does not affect vertical flight for low Reynolds numbers.