
Abstract: Concentric tube robots, composed of nested pre-curved 
tubes, have the potential to perform minimally invasive surgery at 
difficult-to-reach sites in the human body. In order to plan 
motions that safely perform surgeries in constrained spaces that 
require avoiding sensitive structures, the ability to accurately 
estimate the entire shape of the robot is needed. Many 
state-of-the-art physics-based shape models are unable to account 
for complex physical phenomena and subsequently are less 
accurate than is required for safe surgery. In this work, we present 
a learned model that can estimate the entire shape of a concentric 
tube robot. The learned model is based on a deep neural network 
that is trained using a mixture of simulated and physical data.
We evaluate multiple network architectures and demonstrate the 
model's ability to compute the full shape of a concentric tube 
robot with high accuracy. We are then able to use the full shape of 
a concentric tube robot in a motion planner.

(b) Use a color thresholding technique to automatically segment 
out the robot's shape. (c) Apply the shape from silhouette 
algorithm to generate a set of voxels in 3D space. (d) Generate  a 
set of evenly spaced points that best approximate the set of 
voxels.
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Fig. 5. The average time taken to compute the shape of the 
concentric tube robot at a specified configuration, for $20$ evenly 
spaced points along its backbone. We present the average for each 
network topology (Sim+Real), for varying batch sizes. For 
comparison, the physics-based model averages 1.73ms per shape 
computation.

Fig 3. To generate 
training data from the 
physical robot.  (a) 
Take an image of the 
robot's shape with two 
cameras with known 
positions relative to 
the robot.
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Fig. 1. Given a concentric tube robot configuration defined by the 
translations and rotations of the tubes (upper left), our neural 
network (upper right) outputs coefficients for a set of polynomial 
basis functions (lower left) that are combined to model the 
backbone of the robot's 3D shape (lower right).

Fig. 2. We train the neural network using data from a physical 
robot. By taking images from multiple cameras (blue arrows), the 
shape of the robot's shaft (pink arrows) can be reconstructed in 3D 
using shape from silhouette.

Fig. 4. A histogram of the maximum error along the robot's shaft 
for the learned model and the physics-based model, for each of 
the $1,000$ test points. The distribution is shifted to the left in the 
learned model (Sim+Real 3x30), indicating that it is more likely 
to produce lower error values.


