Determining Phrike (Phrke) Phenotype Causing Mutation through Micro-array Assay Analysis

Ji Heon (Jeannie) Chung1, Beverly Koller PhD2

University of North Carolina at Chapel Hill1, Department of Genetics at University of North Carolina at Chapel Hill2

Abstract

Spontaneous mutation in mice have been a driving force in the generation of model of human disease and in assigning genes to complex physiological processes. A prominent example of this is our understanding of the myelination of neurons. Mice with changes in myelination are easily detected because of distinctive motor/behavioral changes and comprise the largest subgroup of neurological mutant lines. We identified a mouse in our colony at UNC with a phenotype common to many mice which have been shown to have defective myelination, namely a “shivering” phenotype early in life. We have assigned this mutant mouse line the name “Phrike.” The mice which developed this phenotype are inbred and the strain is designated 129Phrke (129). As a first step to identification of the gene carrying the mutation, we backcrossed it onto a C57BL/6N (129) substrains, and detects presence of many genetic constructs. The reference sequence (C57BL/6N) are marked in blue, the 129 sequence in green, and the heterozygous segments in grey. Majority of chromosome 17 was 129, which makes it difficult to figure out which part of the sequence had the Phrike mutation. However, using commonly known mutation database that list genes in which mutations have been demonstrated to result in phenotypes similar to that of Phrike, to determine whether any of these gene resided in the regions of chromosome 17 that remain homozygous for 129 DNA. Several such genes were identified and are shown in Table 1. The Mog locus is inherited as an autosomal dominant trait. This makes it a less likely candidate. However, it is possible that Phrike represents a less severe mutant allele of Mog and thus the phenotype becomes apparent only in homozygous animals. The more likely candidate is Qk. MGI lists numerous allele of the Qk gene.

Introduction

A Microarray platform was used to match DNA of Phrike mice to probes of known markers to test the presence of specific genetic constructs. The microarray platform that was used was the MiniMUGA, a genotyping array that provides SNP markers on an illumine Infinium platform. This genotyping array provides a highly cost-efficient tool for detecting heterogeneous regions and discriminating between haplotypes in homozygous regions. Additionally, it provides broad discrimination between most inbred strains, supporting mapping of dozens of different recombined complexity crosses (RCCs) involving multiple substrains, and detects presence of many genetic constructs. This is done by conjugating invariable oligonucleotide probes (of 50bp length) to silica beads, which are addressed to wells on the illumine Infinium HD platform. Sample DNA are fluorescently labeled with nucleotides, and are hybridized to the oligonucleotide probes. Based on the signal intensity of the fluorophores, the genotype (AA, AB, BB) is determined (Figure 1).

Methodology

Figure 1a: Infinium Assay used in miniMUGA for 129

A. Oligonucleotide probes (colors represent different probes) for specific genetic constructs are conjugated to silica beads (grey). Mutated sample DNA of 129 origin) have fluorescently labeled nucleotides (Stars) and DNA of C57BL/6N are not labeled fluorescently.

B. A fluorescence signal can only be found when the 3’ end of the fluorescently marked probe is perfectly matched with the “mismatched” perfect pair (probe).

C. The relative bisignal intensity from the fluorophores at target nucleotide is processed into AA, AB, or BB using Illumina BeadStudio software. (Ex: AA= bright green, AB= right yellow, BB= bright red)

Figure 1b: Infinium Assay used in miniMUGA for C57BL/6N (B6) mice

A. Oligonucleotide probes (colors represent different probes) for specific genetic constructs are conjugated to silica beads (grey). Mutated sample DNA of 129 origin) have fluorescently labeled nucleotides (Stars) and DNA of C57BL/6N are not labeled fluorescently.

B. No fluorescence signal is found as the DNA did not match the probes.

C. The relative signal intensity from the fluorophores at target nucleotide is processed into AA, AB, or BB using Illumina BeadStudio software. (Ex: AA= bright green, AB= right yellow, BB= bright red)

Figure 2: miniMUGA results

As the gene exhibits a recessive genetic pattern, this means that the gene must be homozygous 129 (marked fully red). As the only chromosome that is homozygous 129 for all three sample studied is chromosome 17, we deduced that the gene of interest lies on chromosome 17.

Results

Table 1: Known Chromosome 17 genes essential for myelination and/or motor neuron function in mice

<table>
<thead>
<tr>
<th>Gene</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mog</td>
<td>129</td>
<td>C57BL/6N</td>
<td>C57BL/6N</td>
<td>C57BL/6N</td>
<td>C57BL/6N</td>
</tr>
<tr>
<td>Qk</td>
<td>129</td>
<td>C57BL/6N</td>
<td>C57BL/6N</td>
<td>C57BL/6N</td>
<td>C57BL/6N</td>
</tr>
</tbody>
</table>

The reference sequence (C57BL/6N) are marked in blue, the 129 sequence in green, and the heterozygous segments in grey. Majority of chromosome 17 was 129, which makes it difficult to figure out which part of the sequence had the Phrike mutation. However, using commonly known mutation sites for Chromosome 17 in MGI, could narrow down mutation sites.

Conclusion/ Future Direction

• The Phrike gene lies within Chromosome 17 on a segment that is of 129 origin.

• The inheritance pattern of the mutation is recessive.

• Further Research will be done to:

1. Verify the MUGA results placing Phrike in one of the two regions on Chromosome 17 using strain specific PCR primers sets.

2. Reduce the interval of 129 in which Phrike resides, i.e. localize to one of the two DNA segments (would require more backcrossing with C57BL/6N mice).

3. Eliminate Mog (miniDip) by sequencing Mog DNA/gene from the mutants (as it has a different inheritance pattern).

4. Eliminate Qk by sequence expression analysis in relevant tissues.

5. If Phrike mice have wild type Mog and Qk, identify Phrike by sequence the homozygous mutant Phrike mouse and a wildtype 129 mouse.

6. If Phrike is an allele of Qk, or Mog, identify the mutation and compare the phenotype to that of other mouse lines carrying other mutations in these genes.

References


Acknowledgements

I would like to thank the Beverly Keller Lab at University of North Carolina at Chapel Hill where this research was conducted and data was analyzed. I would also like to thank Professor Terry Furry for being my Biology Faculty Sponsor for the Biology 395 Fall 2019 and Spring 2020 semesters.