Development and Evaluation of Point-of-Care Diagnostic Tool for Human Brucellosis

Osahon Iyamu
What’s Brucellosis?

- Facultative, gram-negative coccibacillus
- Zoonotic
 - *B. melitensis*
 - *B. suis*
 - *B. canis*
 - *B. abortus*
- Highly contagious
 - Fluids from animals
 - Aerosol inhalation
 - Consumption of unpasteurized cheese, milk, and undercooked meat
 - Poses occupational risk for shepherds, abattoir workers, veterinarians, dairy industry, and lab personnel
- Endemic in Mediterranean basin, Middle East, Central Asia, China, the Indian subcontinent, sub-Saharan Africa, and parts of Mexico and Central and South America.
Clinical Considerations

- Incubation period: 2-4 weeks (but can be several months)
- Acute: fever, myalgias, malaise, night sweats (malodorous), headache, abdominal pain, cough, arthralgias, anorexia
 - Lymphadenopathy, hepatomegaly, splenomegaly
 - Labs: transaminitis, leukopenia, lymphocytosis, mild anemia, thrombocytopenia
- Focal complications: arthritis, sacroiliitis, spondylitis, osteomyelitis, epididymo-orchitis, spontaneous abortion, meningitis, brain abscess, endocarditis (main cause of mortality)
- Chronic: clinical manifestations >1 year after diagnosis is established
 - Usually localized infection
- Relapse following treatment: 5-15%
Current Diagnostic Methods

- **Gold standard: blood or bone marrow culture**
 - Need BSL-3 for culture, variable sensitivity, long incubation
 - Usually made using clinical symptoms + serology

- **Serology**
 - E.g. qualitative slide agglutination test
 - No differentiation between acute, relapsed, chronic, or past resolved infection
 - Cross-reacts with other bacteria
 - Immune response in humans is highly variable

- **Nucleic acid amplification tests (NAATs) – most sensitive and specific**
 - May also stay positive despite antibiotic therapy
 - Generally require a reference laboratory
 - No standardization, no sufficiently validated commercial tests.

Recombinase Polymerase Amplification (RPA)

- Isothermal (37-42 °C) DNA amplification technique
- Rapid (15-30 min)
- Sensitivity comparable to PCR
- Adaptable to lateral flow (LF) platforms

RPA Cycle, TwistDx
RPA Cycle

- Recombinases associate with primers
RPA Cycle

- Recombinases associate with primers
- Recombinases catalyze strand exchange
RPA Cycle

- Recombinases associate with primers
- Recombinases catalyze strand exchange
- Polymerases synthesize daughter strands while single-stranded binding proteins (SSB) stabilize ssDNA
Optimization for Lateral Flow

- Fluorophore-tagged probe included in reaction

Li et. al. Analyst (2019)
Optimization for Lateral Flow

- Fluorophore-tagged probe included in reaction
- Biotin-tagged primer

Li et. al. *Analyst* (2019)
Optimization for Lateral Flow

- Fluorophore-tagged probe included in reaction
- Biotin-tagged primer
- Fluorophore-tagged probe forms a truncated amplicon along with biotin-tagged primer
 - Truncated, double-tagged amplicons exit the amplification cycle and accumulate

Li et. al. Analyst (2019)
Optimization for Lateral Flow

- Dilute RPA reaction in buffer containing gold nanoparticles coated with anti-fluorophore antibodies
Optimization for Lateral Flow

- Dilute RPA reaction in buffer containing gold nanoparticles coated with anti-fluorophore antibodies
- Run on a lateral flow strip with anti-biotin test and control lines
Optimization for Lateral Flow

- Dilute RPA reaction in buffer containing gold nanoparticles coated with anti-fluorophore antibodies
- Run on a lateral flow strip with anti-biotin test and control lines
- Total time: < 1 hour

RPA nfo, TwistDx
Test results, UStar biotechnologies
Real Time RPA (RT-RPA)

TwistAmp™ exo Probe
Exonuclease cuts THF residue

THF residue
Quencher
3’ block
Fluorophore
Nuclease

RPA exo, TwistDx
Brucella spp. RPA

- **Target:** *bcsp31* gene
- **18 Brucella spp. tested positive:** *B. abortus, B. melitensis, B. suis, B. canis, B. neotomae, B. ovis*, and four Brucella vaccine strains
- **4 non-Brucella species tested negative:** *E. coli, P. multocida, S. suis*, and *P. aeruginosa*

Table 4 RPA primers and probes used in this study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5’–3’)</th>
<th>Genome location(CP007763.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bru. RPA F4</td>
<td>TGCATCCCGGCGCAGAACGCTTTTACAAGGAA</td>
<td>639988–639957</td>
</tr>
<tr>
<td>Bru. RPA R1</td>
<td>ATAACGAGCTGCGCAAATGTCAACCTCTCTAA</td>
<td>639873–639904</td>
</tr>
<tr>
<td>Bru. RPA P1</td>
<td>GCGGGCGTGACTGAATAAATCCCTCAATGA-(FAM-dT)-THF-GG-(BHQ1-dT)-TCCTGATATCTTA (C3 Spacer)</td>
<td>639956–639910</td>
</tr>
</tbody>
</table>

Brucella spp. RPA-LF Does Not Detect Serologically Cross-Reactive Bacteria

<table>
<thead>
<tr>
<th>Negative Control</th>
<th>B. suis biovar 1</th>
<th>B. suis biovar 2</th>
<th>B. abortus biotype 4</th>
<th>B. abortus biotype 9</th>
<th>B. abortus RB51</th>
<th>B. melitensis biotype 1</th>
<th>E. coli</th>
<th>E. chaffeensis</th>
<th>Y. enterocolitica</th>
<th>F. tularensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Control</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
</tr>
<tr>
<td>Call</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Brucella spp. RPA-LF can detect a single *Brucella spp.* genome
Lower Limit of Detection

B. abortus genomes

<table>
<thead>
<tr>
<th>B. abortus genomes</th>
<th>Test Positive</th>
<th>Test Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Limitations and Future Development

Limitations

- Optimization for DNA Extraction for use in assay will take longer to complete
- Lack of a BSL 3 lab means clinical validation must be done elsewhere

Future Experimentation

- Potential DNA Extraction Techniques
 - Optimized DNA extraction with Oscillating multi-tool with 3D printed adaptor
- Clinical Validation
 - Possible future work with Epicentre Uganda with facilitating pilot studies in rural southwestern districts

Distribution of bovine livestock in Uganda. Blue boxes highlight the proposed study districts.

Courtesy of Dr. Rhoel Dinglasan, University of Florida.
Acknowledgements

• I would love to express my thanks to Clark Cunningham, Dr. Emily Ciccone, Dr. Jonathan Juliano, and the rest of the Infectious Disease Epidemiology and Ecology Lab (IDEEIL)