Extra Axial Cerebrospinal Fluid Volume and a Diagnosis of Alzheimer’s

Jash Mirani (Dept. of Psychiatry)
Biomarkers from MRI scans

- The most widely used biomarkers for Alzheimer's disease are beta-amyloid 42, tau, and phospho-tau, which are all detectable in CSF.

Hypothetical model of biomarker changes in Alzheimer’s Disease

Extra-Axial Cerebrospinal Fluid

- Shen et al, 2013: cerebrospinal fluid is a circulatory and regulatory system
- Da Mesquita et al, 2018: Regulation of waste clearance in the brain
Previous EACSF Findings

- Shen et al, 2013 and Shen et al, 2017: 24% more EACSF in infants at 6 months who develop the most severe Autism Spectrum Disorder (ASD) symptoms at 24 months.

[Graph showing changes in extra-axial CSF over time for different risk groups.]

Low-Risk Infant with Normal MRI; **ASD-negative**

High-Risk Infant with Increased Extra-Axial CSF; **Diagnosed with ASD**
Cerebrospinal Fluid Overlooked

- Major neuroimaging software does not retain CSF space during skull-stripping step

FreeSurfer segmentation

Novel process to retain CSF spaces
Shen et al, 2017
AutoEACSF Processing

- CSF above the AC-PC line is considered extra-axial cerebrospinal fluid

The AutoEACSF pipeline

Inputs:
- T1* (and optionally T2*) MRI image(s) of the brain
- Optional masks

First step: Reference alignment: putting all images and optional masks in the same reference space

Second step: Skull stripping: removing the skull from the input T1 (and T2 if provided) image(s)

Third step: Segmentation: labelling the different regions of the brain (GM*, WM*, CSF*)

Fourth step: Ventricle masking: removing the CSF located in the ventricles from the segmentation

Outputs:
- Segmentation of the extra-axial CSF
- Scalar value of the volume of EACSF*

Notes:
- WM: white matter
- GM: gray matter
- (EA)CSF: (extra-axial) cerebrospinal fluid
- T1: T1 weighted image, a type of MRI in which CSF appears dark, WM appears light and GM appears gray
- T2: T2 weighted image, a type of MRI in which CSF appears bright, WM appears dark gray and GM light gray
Data for this study

- Only T1-weighted images were available for each subject

- This study utilized the MRI and demographic data available from ADNI
Processing Issues

- First round using automatic FreeSurfer brain mask processing was insufficient, so second multi-atlas round was run.

Brain Mask ratings
- 2% rejected

EACSF Segmentation ratings
- 15% rejected
Diagnosis Groups

<table>
<thead>
<tr>
<th>Normal Development Control (CN)</th>
<th>Subjective Cognitive Decline (SMC)</th>
<th>Early Mild Cognitive Impairment (EMCI)</th>
<th>Late Mild Cognitive Impairment (LMCI)</th>
<th>Alzheimer’s Disease (AD)</th>
</tr>
</thead>
</table>

- Nonaccelerated 6-month:
 - Tissue loss: -3%, -2%, -1%, 0%, 1%, 2%, >3%
 - Ventricle expansion

- CN
- SMC
- EMCI
- LMCI
- AD

Sample Statistics

<table>
<thead>
<tr>
<th>Diagnosis Group</th>
<th>Age (Years)</th>
<th>Male</th>
<th>Normalized EACSF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>CN</td>
<td>41</td>
<td>73.1</td>
<td>5.2</td>
</tr>
<tr>
<td>MCI</td>
<td>47</td>
<td>72.9</td>
<td>7.6</td>
</tr>
<tr>
<td>AD</td>
<td>23</td>
<td>76.2</td>
<td>7.8</td>
</tr>
<tr>
<td>Change</td>
<td>17</td>
<td>73.7</td>
<td>7.0</td>
</tr>
</tbody>
</table>

![Diagnosis Categorization](image1.png)

![Proportion](image2.png)
No significant differences found between diagnosis groups at either time point.

<table>
<thead>
<tr>
<th>Diagnosis Group</th>
<th>Mean Initial</th>
<th>Mean Final</th>
<th>Change in Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>11.7%</td>
<td>12.7%</td>
<td>+1.0%</td>
</tr>
<tr>
<td>MCI</td>
<td>11.3%</td>
<td>12.9%</td>
<td>+1.6%</td>
</tr>
<tr>
<td>AD</td>
<td>12.1%</td>
<td>12.6%</td>
<td>+0.5%</td>
</tr>
<tr>
<td>Change</td>
<td>11.1%</td>
<td>12.4%</td>
<td>+1.3%</td>
</tr>
</tbody>
</table>

*% EACSF of ICV
Other Volumes Associated with EACSF

- EACSF significantly correlated with ventricle volume
- In a general linear model predicting EACSF, entorhinal and ventricle volumes were significant variables

*normalized by dividing by ICV
>The differences in ventricle volume across diagnosis groups were all significant or near-significant.
The differences in ventricle/EACSF proportion across diagnosis groups were all significant or near-significant. The comparison between CN and MCI was more significant than either EACSF or ventricles alone.
Longitudinal Population

- Longitudinal subjects
- Cross-sectional subjects
EACSF by Days

- Four longitudinal models - one for each diagnosis group - with days, ICV, age, and sex as variables.
Comprehensive Model

- Comprehensive models using the data from all four diagnosis groups were made. The variables and their significance levels are shown.

because of matrix deficiency, the intercept term was taken to reflect the AD diagnosis variable and associated higher order interaction terms
Two Group Comparison

- Six models compared two diagnosis groups at a time. Only the MCI-Change model had a statistically significant diagnosis variable.

Fixed effects:

| | Estimate | Std. Error | df | t value | Pr(>|t|) |
|------------|----------|------------|-----|---------|----------|
| (Intercept)| 129588.027 | 37797.531 | 33.719 | 3.428 | 0.00162 ** |
| Days | 1.558 | 2.113 | 138.502 | 0.737 | 0.46231 |
| PTGENDERMale | 3359.584 | 7295.705 | 34.014 | 0.460 | 0.64810 |
| DXMCI | -15237.933 | 7698.308 | 33.951 | -1.979 | 0.05593 . |
| AGE | 697.487 | 492.494 | 33.687 | 1.416 | 0.16589 |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Conclusion

- No association between EACSF and Alzheimer’s Disease
- Increased support for T1-only data with AutoEACSF
- Potentially interesting EACSF-ventricle relationship
- Additional investigation needed for those who changed diagnosis
Thank you for listening!

Nate Fulmer
Jash Mirani
Md Asadullah Turja
Guorong Wu

Martin Styner
Rui Li
Mansi Sakarvadia