GABAergic Control of Network Activity in an *in vitro* Model of Alzheimer’s Pathogenesis

Lucas Lu
Table of Contents.

01. Alzheimer’s Disease
 Pathology and Pathogenesis Models

02. Experimental Techniques
 Fluorescent Calcium Imaging and Microelectrode Arrays

03. GABAergic Control
 Effects of GABAergic Inhibition

04. Tau Pathology
 Inducing Neuronal Tau Aggregation

05. Network Connectivity
 Degree of Connectivity Between Neurons
Alzheimer’s Disease.

Irreversible neurodegenerative disease with no disease-modifying treatments.

Hallmarks: Tau Tangles and Amyloid Beta Plaques

Tau recently recognized as an early component of the pathogenesis.
Healthy tau

- Stabilizes microtubules.
- Cellular transport to axon and dendrites.

Pathological tau

- Destabilizes microtubules.
- Forms intracellular tangles.
- Cleaved tau or modified tau can accumulate at the synapse and hinder synaptic communication.
Modified tau accumulates in the synapse.

Accumulation of tau may enhance excitatory activity → **Hyperactivation Model**.

Inhibitory GABAergic interneurons are thought to be vulnerable to the effects of abnormal tau.
In Vitro Neural Cultures.

Harvest wild type (WT) mice brains

Micro-dissected brain sections

Single-cell suspension

Microelectrode Array

Coverslip cultures
In Vitro Neural Cultures.

MEA Electrode Grid

Fluorescence Imaging
Fluorescent Calcium Imaging of Bicuculline.

Excitatory activity imaged with fluorescence intensity.

Bicuculline is a GABAergic antagonist.

We challenge neurons with bicuculline to induce hyperexcitability.
Microelectrode Arrays (MEAs).

60 electrodes detect action potentials of neurons.

Action potentials are spike events, which form bursts in sequence.
Electrophysiology Characterization.

- **Action Potential Intensity**
- **Interspike Interval (ISI)**: Duration between spikes
- **Burst Duration**: Duration of the burst
- **Interburst Interval (IBI)**: Duration between bursts
- **Firing Rate (Hz)**: Number of spikes per second.
PLSF Lentiviral Construct.

Lentiviral construct containing the P301L and S320F mutations that creates tau aggregation. High infection rate (>95% within 5 days) quickly induces tau tangle-like aggregations. Accumulation of tau aggregates at the synapse disrupts neuronal communication.
Healthy vs. Pathological Electrophysiology.

Normal burst
- Tighter bursts, higher firing rates, low ISI and IBI.

Abnormal tau
- Disorganized bursts, reduced firing rates, higher ISI and IBI.
Neuronal Electrophysiology without Inhibition.

Burst Duration

- Baseline: [Value]
- Bic: [Value]

Firing Rate

- Baseline: [Value]
- Bic: [Value]

Interburst Interval

- Baseline: [Value]
- Bic: [Value]
Abnormal tau pathology does not recapitulate GABAergic loss.
Network Communication: Node Degree.

How well connected is each electrode with each other?

Compares each action potential with neighboring action potentials occurring in similar time frames.
PLSF Node Degree.

3 days Post-Infection

5 days Post-Infection
PLSF Node Degree.

3 days Post-Infection

5 days Post-Infection
Summary and Conclusion.

One of the first attempts to investigate AD pathogenesis on a network level.

Hyperexcitability of neurons may be caused by:

1. Excessive excitatory activity \textit{or} 2. Absence of inhibitory activity

PLSF neurons did not exhibit enhanced excitatory activity, but showed deterioration of network communication.

Loss of excitatory activity rather than GABAergic neurons.

Activities of neurons under GABAergic inhibition do not recapitulate those of neurons under abnormal tau development.

\textbf{Treatments designed to restore activity in AD patients will require more than correction of GABAergic activity.}
Acknowledgements.

Meeker Lab, UNC Neurology

Braxton Harris
Dr. Thomas DeMarse
Dr. Rick Meeker

UNC Biology

Dr. Amy Shaub Maddox
Jeanne-Marie McPherson