Impact of winter ocean warming and reduced heterotrophy on the physiological response of the temperate coral *Oculina arbuscula*

Tyler Christian¹, Olivia Williams², Grace Pigford¹, Karl D. Castillo²,³

¹Department of Biology, University of North Carolina at Chapel Hill; ²Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill; ³Department of Marine Sciences, University of North Carolina at Chapel Hill

Introduction

- Coral calcification has declined due to anthropogenic global change and will continue as ocean warming persists.¹
- The southeast coastal United States will continue to experience warmer waters.
- Along with ocean warming, plankton abundance is projected to decrease in the region.¹

Experimental Design

- Coral collection at Radio Island, NC
- 15 *O. arbuscula* genotypes (distinct colonies) collected
- One coral nubbin from each genotype in each tank
- 15 nubbins x 4 treatments x 3 tanks = 180 coral nubbins
- Ran experiment for 60 days (Jan 18–March 18, 2019)

Results and Implications

- Elevated winter temperature increased calcification rates.
- Low feeding had higher calcification under ambient conditions only.

Research Question

How will projected winter ocean warming and predicted declines in zooplankton abundance for heterotrophic feeding impact the temperate branching coral, *Oculina arbuscula*?

References and Acknowledgements

I would like to thank Colleen Bove, JP Rippe, Jess McCoppin, Natalie Patetta, and Liz Farquhar for their help with this project.