Background

- The a2A adrenoreceptor is a subtype of adrenoreceptors
 - Targets norepinephrine activity in our CNS and PNS
 - Primarily exist in vascular presynaptic nerve terminals
 - It is a high target for drug design to treat the effects of stimulation
 - Stimulation causes hypotension, sedation, analgesia

- Binding of norepinephrine to these receptors inhibits the release of norepinephrine
 - Believed to play a role in depressive disorder & schizophrenia

- The a2A adrenoreceptor is a G protein receptor
 - Made up of 7 trans membrane alpha helices
 - Coupled with a Gi or Go protein
 - There is difficulty establishing models of GPCR due to the criteria of being membrane bound
 - Current experiments use homology & molecular modelling

Significance & Purpose

Our Goal: To create a 3D model of the crystallized alpha-2A adrenoreceptor & demonstrate the binding of norepinephrine from a digital model

This particular adrenergic receptor plays a role in drug therapies targeting high blood pressure, muscle spasms, and ADHD.

Design Process

Design Iterations

(1) Built a preliminary model using pipe cleaners, hot glue, and clay from the UNC MakerKit
(2) Created design sketches using Ostopovici-Halip computer generated model for scaling
(3) Used TinkerCad to develop a first draft of our receptor & a NE molecule
(4) Printed first draft using Ultimaker 3D printers & CPE material at UNC’s Be A Makerspace - 3D printer & 101 BeAM training was completed prior to printing (painted with acrylic paint to mirror the TinkerCad computer model)
(4) With hot glue & magnets, we assembled the 7 subunits & fit the receptor into binding pocket for our final product

Discussion & Implications

This 3D representation will help elucidate the specific binding region on the receptor and allow for improvements in drug design.

- Aids in exploring the configuration of a receptor that can only be seen microscopically
- Allows for comprehension of receptor structure for introductory NSCI students
- We can see the overall binding area of the NE molecule
- We identified the residues that NE is targeting through hydrogen bonding at helices III and V

Future Directions:

In the future, we hope to be able to model a more specific receptor that focuses in on the residues that are involved in the binding affinity of the norepinephrine molecule.

References

Troubleshooting

- Initial issues with sizing in TinkerCad - the components were too large for 3D printing and were scaled down by 50%.
- Faced issues with printing standing receptor - decided to lay each helices flat.
- The additional 4 helices were interrupted during 3D printing.
- A clay form was needed in order to stand up the 3D model.