Neuroinflammation-mediated Degradation of NMDA receptors and Tau Dephosphorylation Mechanisms Relating to Alzheimer’s Disease

Presented by Diane Youngstrom
Background: Alzheimer’s Disease

- Most common form of dementia
 - Progressive neurodegenerative disease
 - Incidence & prevalence increasing

- Pathology
 - Tau tangles (NFTs) & Aβ plaques
 - Synaptic & neuronal loss
 - Neuroinflammation (activation of microglia & astrocytes)

- No cure or disease-modifying drug
 - Many failed Phase 3 clinical trials (targeting Aβ)

- Memantine
 - 1 of 4 FDA approved drugs to mitigate symptoms (e.g. memory deficits)
 - Does not slow AD progression
 - NMDAR antagonist → blocks glutamate

Inhibiting phosphatases (PP1/PP2A) with okadaic acid blocks the tau dephosphorylation typically caused by CM.
NMDAR degradation not prevented by Phosphatase Inhibitors

NMDARs independent (or upstream) of the PP1/PP2A phosphatases that dephosphorylate tau under neuroinflammatory insult
Tau dephosphorylation may not be prevented by D-AP5

- Most (phospho)-tau roughly follow control/CM patterns → not significantly affected by D-AP5 or MTEP/JNJ
- Tau dephosphorylation by CM is independent of these glutamate receptors
D-AP5 prevents NMDAR Degradation

D-AP5 prevents NMDA receptors degradation by CM → NMDA receptor activation is required for NMDAR degradation by CM
Conclusion: Summary of Western blot Results

Control (untreated)

Okadaic acid + CM

D-AP5 + CM
Future Directions

• What is the mechanistic link between NMDAR and tau?
 o Fyn-mediated?
 o Is tau required for degradation of NMDA receptors?
 ▪ Tau knockout

• How does CM change neuronal network activity?
 o iGluSnFR live-cell imaging
 o Microelectrode array
Acknowledgements

Thank you to Diering Lab
Graham Diering, PhD
Michael Ye
Sheneé Martin
Sean Gay
Julia Lord
Kirsten Smith (fellow undergraduate)

Thank you to Cohen Lab
Jui-Heng (“Henry”) Tseng, PhD
Todd Cohen, PhD
Thank you to Sarah Cohen, PhD
Thanks to my family and friends!