Affect and Social Judgment

Sree Gogineni, Mallory J. Feldman, and Kristen A. Lindquist

University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience

Carolina’s Affective Science Lab

Background

- Feelings shape what we see, think, and do, even when their eliciting source is unrelated to the decision at hand. This is called Affective Realism [1].
- Prior research has demonstrated an interaction between physiological reactivity (e.g., inflammatory, autonomic) and interoceptive ability on affective realism [2].
- This study extends these findings to more systemic states of hunger and fatigue.
- We evaluate the convergent/divergent validity of self-reported interoceptive awareness (measured on the BAQ; [3]) vs difficulty (measured on the ISQ; [4]).

Methodology

Participants (n=130, M_age = 19) completed: the Affective Misattribution Procedure (AMP), and a series of questionnaires in counterbalanced order.

AMP
- Participants viewed an affective prime, blank screen, affectively neutral face, and then a pattern mask consisting of black and white “noise” (see above). Participants then rated the trustworthiness of the face they just saw on a 5-point Likert scale ranging from 1 (very untrustworthy) to 5 (very trustworthy).
- Target faces were chosen to match racial demographics of the United States

Questionnaires
- Self-reported hunger, fatigue, time since last meal, and hours slept
- Body Awareness Questionnaire (BAQ): self-reported interoceptive awareness
- Interoceptive Sensory Questionnaire (ISQ): self-reported interoceptive difficulty

Example Questions

| BAQ: “I am always aware of changes in my energy level when I eat certain foods” |
| ISQ: “I have difficulty feeling my bodily need for food” |

Results

We replicated the basic Affective Realism Effect: Participants rated targets as more trustworthy when paired with a positive prime compared to when paired with a neutral (b = 0.12, se = 0.002, t(23270) = 11.24, p < 0.001), or negative prime (b = 0.20, se = 0.002, t(23270) = 6.052, p < 0.001) and when when paired with a neutral compared to a negative prime (b = 0.09, se = 0.002, t(23270) = 5.19, p < 0.001).

Table 1: Summary of 3-way interactions

<table>
<thead>
<tr>
<th>Condition</th>
<th>3-way interactions</th>
<th>Body AWARENESS; (BAQ)</th>
<th>Interoceptive DIFFICULTY; (ISQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Hunger</td>
<td>F(2,23262) = 2.96, p = 0.05; ability + hunger + bias</td>
<td>N.S</td>
<td></td>
</tr>
<tr>
<td>Hours Since Last Meal</td>
<td>F(2,23262) = 7.08, p < 0.001; ability + hunger + bias</td>
<td>F(2,23262) = 8.14, p < 0.001; ability + hunger + bias</td>
<td></td>
</tr>
<tr>
<td>Perceived Fatigue</td>
<td>F(2,23262) = 5.12, p = 0.006; ability + awake + bias</td>
<td>N.S</td>
<td></td>
</tr>
<tr>
<td>Hours Slept</td>
<td></td>
<td></td>
<td>F(2,23262) = 13.57, p < 0.001; ability + sleep + bias</td>
</tr>
</tbody>
</table>

Discussion

- We replicated the interaction effect of Valence and Physiological states on affective realism: however self-reports of interoceptive ability and difficulty produced different patterns of results.
- Interoceptive awareness (BSQ) and interoceptive difficulty (ISQ) predicted in opposite directions
 - Body Awareness predicted bias when participants reported greater subjective hunger & fatigue
 - Interoceptive Difficulty predicted bias when participants provided objective measures of hunger & fatigue

References