To determine if early developments in working memory task (n-back task) are associated with higher executive function in children, we analyzed cortical thickness across different lobes from early infancy to childhood.

INTRODUCTION

- Working memory is a type of executive function that requires encoding, maintenance, and updating of information.
- Developmentally, working memory has protracted maturation over infancy and childhood.
- The frontal lobe is strongly associated with higher order thinking; however, the parietal lobe is also the dorsal pathway of information which is important for spatial processing. Similarly, the temporal lobe carries information through the ventral pathway such as object recognition.

OBJECTIVE

To determine if early developments in cortical thickness is relevant for predicting executive function through a working memory task (n-back task).

RESULTS

- **Figure 1. Cortical Thickness Correlated with N-back D-prime Performance**
 - Frontal Lobe Thickness by Age
 - Parietal Lobe Thickness by Age
 - Temporal Lobe Thickness by Age
 - Strongest correlation at last time periods for all three lobes when cortical thickness is compared with n-back D-prime analysis.

- **Figure 2. Cortical Thickness Correlated with N-back Target Accuracy**
 - Parietal Lobe Thickness by Age
 - Temporal Lobe Thickness by Age
 - Strongest correlation at last time periods for all three lobes when cortical thickness is compared with n-back Target Accuracy correlations.

MATERIALS AND METHODS

MRI and Data Collection:

MRI scans collected at 11 possible time periods, using Infant-specific processing pipeline (iBEAT). Then separated into three main time periods: 0-3 months, 9-12 months, and 48-72 months.

Participants:

- 46 at first time periods (0-3 months), 43 at second time point (9-12 months), 28 at last time point (48-72 months)

N-back Task:

- Participants must recognize one specific stimulus (a letter, number, or symbol) in a sequence and then recall the same number later depending on what "n" is.

Statistical Analysis:

Correlation plots with Cortical Thickness measurements and n-back test and linear regressions controlling for age and sex.

CONCLUSIONS

Decreased Cortical Thickness for all three lobes at the last time point was correlated to working memory at pre-adolescent measures (n-back D-prime only):

- Significant for frontal and parietal lobes at last time period, but trending for the temporal lobe.
- Strong Negative Correlation

Likely cause: Synaptic Pruning

Initial burst of synaptic connectivity affecting gray matter measurements followed by a steep decrease, indicating pruning of synapses and related gray matter, accompanied by greater myelination of existing connections.

Limitations and Future Directions

Participants in fMRI machine during n-back task instead of at computer

Age range of participants (larger compared to previous timepoints)

Dropped participants throughout the longitudinal study for various reasons

ACKNOWLEDGEMENTS

CIRCLE Lab:
- Dr. Margaret Sheridan, PhD
- Dr. Adam Bryant Miller, PhD
- Mac Woodburn, MS
- Lucy Laurie

Thesis Advisor:
- Dr. Margaret Sheridan

Funded by NIH R21HD096232 & NCTRACS - 27101 14101 429801

Contact: annette.varghese13@gmail.com

REFERENCES

Cognitive (10th ed.). Cengage Learning (BEAT V2.0 Cloud). Retrieved March 14, 2022, from

