Optimizing the Fabrication of Carbon-Fiber Microbiosensors for Simultaneous Detection of Glucose and Dopamine in Live Brain Tissue

Emilie M. Norwood², Alexandra G. Fordehrase¹, Jack S. Twiddy², Lailah A. Ligons², Gregory S. McCarty¹, Leslie A. Sombers¹²
¹ Chemistry, North Carolina State University; ² Biomedical Engineering, North Carolina State University/University of North Carolina, Chapel Hill

cmnorwoo@ncsu.edu

Abstract

Neuronal communication is an energetically demanding process. There is substantial evidence indicating a dysregulation in both brain metabolism and dopamine dynamics in several neurological disorders, including Alzheimer’s disease and addiction. Hence, the precise relationship between glucose and dopamine remains unclear due to a critical lack of analytical tools and techniques capable of studying energetic substrates and dopamine dynamics in situ. Carbon-fiber microelectrodes are commonly coupled with fast-scan cyclic voltammetry (FSCV) for the sub-second detection of electroactive neurotransmitters, such as dopamine, in the brain. These electrodes are modified with oxidase enzymes to create microbiosensors capable of simultaneously quantifying real-time fluctuations of two-electrochemically active substrates, such as glucose and lactate. Hydrogel entrapment of the enzyme within a chitosan matrix on the carbon fiber surface provides for reusability, stability, and selective detection of dopamine and the enzyme substrate using FSCV. The purpose of this study is to characterize the chitosan hydrogel matrix while understanding its effects on acquired electrochemical data. Hydrogel was deposited using linear, nonequilibrium, and monomeric consistency and electrochemical performance was characterized to optimize the deposition potential range and scan rate. Finally, voltammetric measurements were used to determine how these factors relate to sensor performance. Overall, these experiments are important because they provide an improved understanding of the hydrogel matrix that is integral to microbiosensor function, thus advancing this much needed technology for monitoring real-time neurochemical kinetics.

Background

- Dopamine is a major signaling molecule in the striatum
- Glucose is thought to be the primary energetic substrate that fuels dopaminergic signaling

Little is known about the dynamics by which glucose is supplied to meet the metabolic demand associated with neuronal activation
- How does glucose peak with neuronal activation?
- Does the lifetime of glucose availability differ from those of dopaminergic release?

Enzymatic Microbiosensor Fabrication

Carbon-fiber microelectrodes were modified with glucose oxidase (GOx) to allow for the detection of the non-electroactive molecule of glucose while preserving sensitivity to dopamine.

Hydrogel Entrapment of the Oxidase Enzyme in a Chitosan Matrix

The purpose of this study is to characterize the chitosan hydrogel matrix that entraps oxidase enzyme on the electrode surface, and the effects of the hydrogel’s physical nature on acquired electrochemical data.

Electrochemical Conditioning of the Electrode Improves Membrane Consistency

Conditioning the electrode prior to electrodeposition is critical to ensuring biosensor function

The electrochemical conditioning oxidizes the electrode surface, improving electrochemical performance.

Real-Time Measurements in Rat Striatum

We are collaborating with Pinnacle Technologies Inc. to fabricate these microbiosensors at a larger scale so that the technology can be transformed from a custom laboratory tool to something accessible to the whole research community.

Pinnacle Produced Electrodes Generate Quality In Vivo Data

Commercialization of the Technology

In order to understand the impacts of diseases on brain metabolism and to inform potential therapeutic strategies, it is important to have better tools for understanding how these substrates fluctuate relative to one another in real-time.

Acknowledgements