Glioblastoma is a brain tumor with a 5% 5 year survival rate. The current standard of care for glioblastoma patients begins with surgical resection, although clean margins are almost never achieved, leaving microscopic tumor presence. Radiation therapy and oral chemotherapy follow, but the blood brain barrier limits the efficacy of oral chemotherapy, requiring high doses to be given peripherally, which leads to systemic toxicity. In addition to the standard of care, patients with glioblastoma can also opt to use Gliadel, which is the only FDA approved intracranial drug delivery system for the treatment of glioblastoma. But treatment with Gliadel has not shown significant improvements in survival time due to its large burst release. To maximize our control over the release kinetics, we invented a layered hydrogel that is gelled prior to implantation. Our hydrogel capitalizes on research that demonstrates effective killing of remaining tumor cells could be provided by a burst release leading to a high drug concentration initially, followed by sustained drug release at therapeutic concentrations. The hydrogel degrades layer by layer with each layer having a distinct function. Our design also includes a method for ensuring unidirectional release so that the treatment targets the tumor cavity. The stiffness of our hydrogel matches the stiffness of the brain, with an elastic modulus of 1 - 4 kPa.