

A Walking Droplet Moving Over a Submerged Random Topography

Millimetric droplets may 'walk' on a vibrating fluid bath through a resonant interaction with the wavefield they generate on each impact. Walking droplets provide the first macroscopic pilot wave system, pushing the limits of classical mechanics to include wave-like behaviors previously thought exclusive to quantum mechanics. We investigate the exotic diffusion of walking droplets over submerged random topographies.

Acceleration, $\gamma/\gamma_F(\%)$

Absence of Diffusion of an Ensemble of Walking Droplets

 $\Gamma(t) = \gamma \cos(2\pi f t)$

Classical Wave-Particle Analog of Anderson Localization

<u>Abel J. Abraham¹, Stepan Malkov¹, Frane A. Ljubetic¹, Matthew Durey², Pedro J. Sáenz¹</u>

¹Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA ²School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ, UK

While simple classical particles move diffusively when their energy is higher than the random potential background, walking droplets develop a peak in the position histogram, as our experiments show. This unexpected behavior is also seen in quantum mechanics in an effect called Anderson Localization, where electrons have localized, or exponentially confined, eigenmodes even when their energy is higher than the disordered potential.

Ш λ/λ Simulatio χ/λ_F -6.5

Localization in the Droplet Position Histogram Walking Droplet

Wave-mediated mechanism for Analogous Localization

Quantum Particle

Most Unstable Wave Mode

Wave field, η (µm)

topography induced wavefield