Computational Modeling of Ketene Formation from Vaped Acetylated Cannabinoids

Background

Acetylated Cannabinoids

- Phytocannabinoids, or **Cannabinoids**, are compounds produced naturally in plants of the *cannabis* genus
- **Cannabinoids** have been used in the treatment of glaucoma, epilepsy, and terminal illnesses, one ROA includes **vaping**
- Certain cannabinoids are able to acetylated through a nucleophilic acyl substitution with acetic anhydride, producing semi synthetic cannabinoids. This poster will be focused on acetylated delta-8 tetrahydrocannabinol and cannabinol

Figure 1. Conversion of delta-8 tetrahydrocannabinol to delta-8 tetrahydrocannabinol acetate with acetic anhydride.

- Acetylated cannabinoids have increased potency due to non polar acetyl group (high blood brain barrier permeability)
- Certain acetylated cannabinoids are federally legal and have seen widespread recreational use

Ketene Formation

- **Ketene** gas has high pulmonary toxicity and has been demonstrated to be fatal • As of 2020, there has been ~3,000 lung injury related hospitalizations and deaths attributed to ketene formation from vitamin E found in commercial vaporizers³
- Study in 2022 by Munger et al. detected ketene formation upon heating of acetylated cannabinoids at 651K¹, although temperature dependence and specific mechanism not yet determined

Figure 2. Heat catalyzed elimination of ketene from delta-8 tetrahydrocannabinol acetate.

• Study in 2020 by Wu and O'Shea found a related mechanism for the elimination of ketene in phenyl acetate and vitamin E which proceeded through a 4 membered ring concerted pathway²

Methodology & Computational Details

Reaction Mechanism

- Determine the lowest energy transition state and reaction pathway for the elimination of **ketene** from **CBNo** and **delta-8 THCo**
- Transition state search to find saddle point from optimized product structure, confirmed by presence of imaginary vibrational frequency

Temperature Dependence

- Determine the temperature dependence of **ketene** formation in **delta-8 THCo** and **CBNo** with special emphasis on comparing rates of manufacturer recommended temperatures and those found in the by Munger et al
- Temperatures range tested from 298 K to 5000 K

Gas Phase vs Liquid Phase

• Determine the impact of liquid vs gaseous environment on reaction rate

Computational Details

- Gas systems will utilize density functional theroy with M062X and B3LYP functionals, all DFT functionals will utilize a 6311-G basis set with with (d) polarization function and one set of diffuse s and p function on heavy atoms. Systems utilize XQC SCF algorithm with ultrafine integration grid
- Liquid systems utilize explicit solvent modeling with M062X for reactant and UFF for solvent molecules. Basis set, polarization function, and diffuse functions are the same as gas

Conner Baucom

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-2390

Thermodynamics

We observed that this reaction is **endergonic** under standard conditions and thus does not favor the formation of ketene

Kinetics

- We observed the elimination of ketene from delta-8 tetrahydrocannabinol acetate to not proceed through a synchronous four membered transition ring, instead we observed a **concerted asynchronous** pathway
- The reaction involves decrease of electron density between carbon and oxygen, shortly **followed** by an asynchronous proton transfer
- The pathway observed was **different** than the related eliminations of **ketene** from vitamin E and phenyl acetate observed by Wu and O'Shea

Temperature Dependence

Activation Energy (Gas Phase)

We observed a significant decrease in activation energy associated with increased temperature for all functionals tested

Figure 3. Activation energy of transition state from reactant with B3LYP functional over various temperatures.

Rate Constant (Gas Phase)

• We observed temperature dependence for the rate constant for both cannabinoids. The rate of elimination of ketene is directly proportional to the rate constant.

Ketene forms ~10¹⁰ - 10¹² faster at a given concentration of cannabinoid between a "low temperature" $(433 \text{ K})^4$ and temperature tested by Munger et al. $(651 \text{ K})^1$ Ketene forms ~10⁶ – 10⁷ faster at a given concentration of cannabinoid between a "very high temperature vaporizer" $(500K)^4$ and the temperature tested by Munger et al.

DINC

COLLEGE OF **ARTS AND SCIENCES** Chemistry

