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Methodology & Computational Details

MO, ESP, Gas vs Liquid

• Acetylated cannabinoids have increased potency due to non polar acetyl group (high blood brain 
barrier permeability) 

• Certain acetylated cannabinoids are federally legal and have seen widespread recreational use

Ketene Formation
• Ketene gas has high pulmonary toxicity and has been demonstrated to be fatal
• As of 2020, there has been ~3,000 lung injury related hospitalizations and deaths attributed to ketene 

formation from vitamin E found in commercial vaporizers3

• Study in 2022 by Munger et al. detected ketene formation upon heating of acetylated cannabinoids 
at 651K1, although temperature dependence and specific mechanism not yet determined

• Study in 2020 by Wu and O’Shea found a related mechanism for the elimination of ketene in phenyl 
acetate and vitamin E which proceeded through a 4 membered ring concerted pathway2

Thermodynamics
• We observed that this reaction is endergonic under standard conditions and thus does not favor the 

formation of ketene

Kinetics
• We observed the elimination of ketene from delta-8 tetrahydrocannabinol  acetate to not proceed 

through a synchronous four membered transition ring, instead we observed a concerted asynchronous 
pathway

• The reaction involves decrease of electron density between carbon and oxygen, shortly followed by an 
asynchronous proton transfer

• The pathway observed was different than the related eliminations of ketene from vitamin E and phenyl 
acetate observed by Wu and O’Shea

Temperature Dependence

Rate Constant (Gas Phase)
• We observed temperature dependence for the rate constant for both cannabinoids. The rate of 

elimination of ketene is directly proportional to the rate constant.  

• Ketene forms ~1010 - 1012 faster at a given concentration of cannabinoid between a “low temperature” 
(433 K)4 and temperature tested by Munger et al. (651 K)1

• Ketene forms ~106 – 107 faster at a given concentration of cannabinoid between a “very high 
temperature vaporizer” (500K)4 and the temperature tested by Munger et al.

Reaction Mechanism
• Determine the lowest energy transition state and reaction pathway for the elimination of ketene from 

CBNo and delta-8 THCo
• Transition state search to find saddle point from optimized product structure, confirmed by presence 

of imaginary vibrational frequency

Temperature Dependence
• Determine the temperature dependence of ketene formation in delta-8 THCo and CBNo with special 

emphasis on comparing rates of manufacturer recommended temperatures and those found in the by 
Munger et al.  

• Temperatures range tested from 298 K to 5000 K

Gas Phase vs Liquid Phase
• Determine the impact of liquid vs gaseous environment on reaction rate

Computational Details
• Gas systems will utilize density functional theroy with M062X and B3LYP functionals, all DFT 

functionals will utilize a 6311-G basis set with with (d) polarization function and one set of diffuse s 
and p function on heavy atoms. Systems utilize XQC SCF algorithm with ultrafine integration grid

• Liquid systems utilize explicit solvent modeling with M062X for reactant and UFF for solvent 
molecules. Basis set, polarization function, and diffuse functions are the same as gas
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Figure 1. Conversion of delta-8 tetrahydrocannabinol to delta-8 tetrahydrocannabinol acetate with acetic anhydride.

Figure 2. Heat catalyzed elimination of ketene from delta-8 tetrahydrocannabinol acetate.
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Activation Energy (Gas Phase)
• We observed a significant decrease in 

activation energy associated with 
increased temperature for all functionals 
tested

Figure 3. Activation energy of transition state from reactant with B3LYP functional 
over various temperatures.

Acetylated Cannabinoids
• Phytocannabinoids, or Cannabinoids, are compounds produced naturally in plants of the 

cannabis genus
• Cannabinoids have been used in the treatment of glaucoma, epilepsy, and terminal illnesses, one 

ROA includes vaping
• Certain cannabinoids are able to acetylated through a nucleophilic acyl substitution with acetic 

anhydride, producing semi synthetic cannabinoids. This poster will be focused on acetylated 
delta-8 tetrahydrocannabinol and cannabinol

Gas Phase Liquid Phase (Explicit Solvent)

Gas vs Liquid | Rate Constant 
• We observed a slight increases in rate constant for delta-8 THCo (and associated reaction rate) 

for this transition simulated in a liquid phase compared to a gas phase.

Reaction Mechanism
• The data obtained suggest that the reaction is reactant (acetylated cannabinoid) favored
• The data additionally suggest the reaction proceeds through an asynchronous concerted mechanism

Temperature dependence
• Ketene formation rate appears to increase dramatically for both delta-8 THCo and CBNo with 

temperature, a difference of ~1010 between a recommended low temperature and the temperature 
tested by Munger et al. 

Phase dependence
• We observed a slight increase in reaction rate for delta-8 THCo in the explicit liquid phase simulation 

compared to the gas phase simulation. 
• Due to the high temperatures required to undergo the formation of ketene (high activation energy), it is 

likely the gas phase transition is predominant

Future Directions
• We would like to test more specific temperatures that are commonly found in commercial vaporizer 

products
• We would like to determine the impact of using different relevant functionals (MP2, double hybrid 

oniom, ect…). MP2 is almost converged and looks promising!
• We would also like to study this reaction with other acetylated cannabinoids (HHCo, HHCpo, CBD-(OAc)2)

DISCLAIMER: This research should not be used to determine the safety of inhaling acetylated cannabinoids, it is a 
simulated model which is subject to error. We do not condone or encourage the of vaping or use of any substance. 
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