Theory of Moment Propagation for Quantum Dynamics in Single-Particle Description

Nicholas Boyer, Christopher Shepard, Ruiyi Zhou, Jianhang Xu, and Yosuke Kanai
Dept. of Chemistry, University of North Carolina at Chapel Hill
Dept. of Physics and Astronomy, University of North Carolina at Chapel Hill

Introduction and Motivation

Recent development of real-time time-dependent density functional theory (RT-TDDFT) in maximally-localized Wannier functions (MLWF) gauge and the use of the artificial neural network (ANN) for modeling quantum dynamics have motivated us to explore how single-particle time-dependent Schrodinger equation can be reformulated as the dynamics of moments of the position operator. A
theoretical formalism for this moment propagation is developed and numerical demonstrations are given theoretical formalism for this moment propagation is developed and numerical demonstrations are given
for simple proof-of-principle systems where analytical solutions can be derived. We further propose how for simple proof-of-principle systems where analytical solutions can be derived. We further propose how
ANN can be used to perform efficient quantum dynamics simulations with the newly developed moment propagation theory.

Moments of the position operator are given by
$\left\langle x^{a} y^{b} z^{c}\right\rangle(t)=\iiint x^{a} y^{b} z^{c} n(x, y, z, t) d x d y d z$
Time-dependent Schrodinger equation (TDSE)
$i \frac{\partial \psi(x, y, z, t)}{\partial t}=-\frac{1}{2} \nabla^{2} \psi(x, y, z, t)+V(x, y, z, t) \psi(x, y, z, t)$

Moment Propagation Equation of Motion
The explicit wave function dependence for the second time-derivative is removed to yield the equation of motion for the moment propagation
theory (MPT). theory (MPT).

$$
\left.-a(a-1)\left(\frac{(a-2)(a-3)}{4}<x^{a-4} y^{b} z^{c}\right\rangle>+\frac{b(b-1)}{4}\left\langle y^{b-2} x^{n-2-2} z^{c}\right\rangle+\frac{c(c-1)}{4}\left\langle z^{c-2} x^{a-2} y^{b}\right\rangle\right)
$$

$$
L_{x}(x, y, z, t) \equiv-\int_{-\infty}^{x} \alpha_{x}(u, y, z, t) d u
$$

Electron Potential Energy Surface (EPES)
When the energy conservation principle holds, the second time derivative can be also found using

Analytical Solution for Harmonic Potential w/ Homogeneous E-Field For $V(x)=x^{2}+c(t) x$, the analytical solution can be obtained
$\frac{d^{2}\langle x\rangle}{d t^{2}}=-2\langle x\rangle-c(t)$
$\frac{d^{2}\left\langle x^{2}\right\rangle}{d t^{2}}=-4\left\langle x^{2}\right\rangle-2 c(t)\langle x\rangle+2\left(\left(\frac{d\langle x\rangle}{d t}\right)^{2}+\frac{1+\left(\frac{d S}{d t}\right)^{2}}{4 S}\right)$
$S=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$

1D harmonic potential with external electric field given by

$$
c(t)= \begin{cases}0.3 & \text { if } t<0.45 \\ 0 & \text { if } t \geq 0.45\end{cases}
$$

Wave function propagation (TDSE) MPT w/ ${ }^{\text {2nd }}$-order Edgeworth
MPT w/ $4^{\text {th }}$-order Edgeworth
EPES w/ $2^{\text {nd }}$-order Edgeworth

$$
\text { EPES w/ } 2^{n d-} \text { dorder Edgeworth }
$$

$$
\begin{aligned}
& c_{x}^{a b c} \frac{\partial^{2}<x^{a} y^{b} z^{c}>(t)}{\partial t^{2}}=-\iiint\left(a x^{a-1} y^{b} z^{c} c^{\partial V(x, y, z, t)} \frac{n(x, y, z, t)) d x d y d z}{\partial x}\right. \\
& +\iiint\left(a(a-1) x^{a-2} y^{b} z^{c}\left(\frac{\left.d n(x, y, z, t)^{2}\right)}{4 n(x, y, z, z, t)}+\frac{L_{x}(x, y, z, t)^{2}}{n(x, y, z, t)}\right)\right. \\
& +b a x^{a-1} y^{b^{-1}} z^{c}\left(\frac{\frac{\operatorname{dn}(x, y, z, t)}{d n} \frac{d n}{}(x, y, z, t)}{4 n(x, y, z, t)}+\frac{L_{x}(x, y, z, t), L_{y}(x, y, z, t)}{n(x, y, z, t)}\right) \\
& +c a x^{a-1} y^{b} z^{c-1}\left(\frac{\left(\frac{d n(x, y, z, t)}{d n}\left(\frac{d x}{x, z, z, t)}\right)\right.}{4 n(x, y, z, t)}+\frac{L_{x}(x, y, z, t) L_{z}(x, y, z, t)}{n(x, y, z, t)}\right) d x d y d z
\end{aligned}
$$

Moments and wave function

$$
\psi(x, y, z, t)=\sqrt{n(x, y, z, t)} e^{i \theta(x, y, z, t)}
$$

The particle density, n, can be obtained from the is demonstrated.
$n(x)=\frac{p d f\left(\frac{x-\kappa_{k}}{\sigma}\right)}{(}$ an integer partition of integer j is all the possititions of j. sum up positive integers to j . For example, if $\mathrm{j}=3$, then the integer partitions are $1+1+1=1+2=3$. For each in the set:

$$
\begin{array}{lc}
\sigma=\sqrt{\kappa_{2}} & k_{i}=P_{j_{m}} \cdot \operatorname{count}(i) \\
\lambda_{n}=\frac{\kappa_{n}}{\sigma^{n}} & s=j+2 \sum_{i=1}^{\infty} k_{i}
\end{array}
$$

$$
\Sigma_{a}=\mu_{a}-\sum_{i=1}^{a-1}\binom{a-1}{i-1}^{2} \kappa_{i} \mu_{a}
$$

Derivatives of the phase can be expressed as
$\frac{d \theta(x, y, z, t)}{d x}=(-n(x, y, z, t))^{-1} \int_{-\infty}^{x} \alpha_{x}(u, y, z, t) d u$

$+\sum \sum_{c_{i}^{a c}}^{a^{a}} \frac{d n}{d\left\langle x^{a} z^{c}\right\rangle} \frac{d\left\langle x^{a} z^{c}\right\rangle}{d t}+\sum c_{t}^{a b c} \frac{d n}{d\left\langle x x^{b} b^{b} c^{c}\right\rangle} \stackrel{d\left\langle x^{a} y^{b} z^{c}\right\rangle}{d t}$
 In practice, the numerical difference quotient can
be used with the Edgeworth series to calculate α_{x}.

IIS. Slinnikov and R Moessner, "Expansions for nearly
gaussian distributions", Astronomy and Astrophysics
gaussian distributions", Astronomy and A A
Supplement Series $130,193-205$ (1998)
$E=\left\langle x^{2}\right\rangle+c(t)\langle x\rangle+0.5\left(\left(\frac{d\langle x\rangle}{d t}\right)^{2}+\frac{1+\left(\frac{d d}{d t}\right)^{2}}{4 S}\right)$

Artificial Neural Network
The artificial neural network (ANN) was trained on data generated through propagating TDSE (wave function theory).
nout for motivated by the analytical solution for the Input descriptors for the ANN
harmonic potential problem.

Time (a.u.)
Quantum Dynamics
Proof-of-Principle Application to Artificial Neural Network

