Next Generation Multipurpose Prevention Technology (MPT) IVR: Effect of Geometric Design on In-Vitro Release Ava Cohen¹, Allison Thorson¹, Denali Dahl¹, Sarah Anne Howard², S. Rahima Benhabbour^{1,2} THE UNIVERSITY

Multipurpose Prevention Technologies (MPTs) are single strategy technologies, or formulations that address multiple reproductive health conditions³

A long-acting MPT to prevent Human Immunodeficiency Virus (HIV), Herpes Simplex Virus-2 (HSV-2), and unintended pregnancy could overcome acceptability and adherence-related limitations to improve adherence and efficacy outcomes.

Active Pharmaceutical Ingredients (APIs)

•**Dapivirine (DPV):** non-nucleoside reverse transcriptase inhibitor; HIV prophylaxis¹

•Levonorgestrel (LNG): progestin; hormonal contraceptive¹

•Pritelivir (PTV): antiviral helicase-primase complex inhibitor; HSV-2 prevention¹

Intravaginal Rings (IVRs)

Torus-shaped devices comprised of silicon-based, biocompatible resin capable of sustained release for one or multiple APIs. Highly acceptable as a user-controlled system that allows for facile insertion and removal at-will.

Determine which IVR designs enable sustained release of multipurpose prevention technology drugs for ≥30 days. $DPV - 200 \,\mu g/day$ $LNG - 20 \mu g/day$ Targets:

CONCLUSIONS

- Dapivirine release was well above target in all ring desi
- Pritelivir release was at or above target in all ring desig
- Levonorgestrel release in solid ring failed to meet targe
- No rings achieved 100% release within the 30day timeframe.

FUTURE DIRECTIONS

- Continue monitoring release for extended duration (6 days)
- Alter drug loadings to achieve optimal release rates

¹Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill NC; ²Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy

BACKGROUND

People Living with HIV³

HSV-2 increases risk of HIV infection fivefold³.

OBJECTIVE

RESULTS

igns.		Ring Design	24-Hour Burst (%)	24-Hour Burst (µg)	Avg. Release Days 2-28 (μg/day)	Release Rate R ²
gns.	Dapivirine (DPV)	Solid	7.19± 0.07	2145.75 ± 20.96	318	0.99
et.	30mg/ring	GCD1	6.02 ± 0.12	2120.21 ± 40.80	340	0.97
	Target Rate: 200µg/day	GCD2	3.59 ± 0.37	1076.45 ± 109.999	387	0.99
	Levonorgestrel (LNG)	Solid	3.19 ± 0.11	55.26 ± 1.93	8	0.99
	2mg/ring	GCD1	8.93 ± 0.21	214.34 ± 4.94	33	0.99
	Target Rate: 20µg/day	GCD2	4.37 ± 0.37	87.35 ± 7.37	28	0.98
<u>50</u> +	Pritelivir (PTV)	Solid	7.45 ± 0.09	1267.34 ± 15.44	206	0.97
	20mg/ring	GCD1	12.36 ± 0.82	2541.37 ± 168.98	263	0.97
	Target Rate: 200µg/day	GCD2	5.34 ± 0.49	1067.66 ± 97.82	296	0.98

Of All Pregnancies are Unintended³

New STIs Each Day³

 $PTV - 200 \,\mu g/day$

Three ring designs, one solid (Solid) and two with varying geometric complexity (GCD1, GCD2), were designed in CAD and fabricated using Continuous Liquid Interface Production (CLIPTM), a novel 3D-printing process utilizing photopolymerization⁴

Permeable

Ring Specific Su (SSA;

APIs were loaded onto rings by post-fabrication swelling in acetone solution. Solution concentrations to achieve target loading were determined using a weight-based loading equation.

In-Vitro release studies were performed as follows:

- Rings (n=4) were submerged in 200 mL of Simulated Vaginal Fluid (NaOAc + 2% Solutol pH 4.2) and placed in an orbital shaking incubator at 37°C.
- 1 mL aliquots were removed and quantified with HPLC analysis to assess API release across 42 days.
- In the first day, samples were taken more frequently to assess burst release
- Complete media changes were performed weekly to ensure sink conditions were maintained.

1. Dahl, D. (2022). *Drug delivery systems for female sexual and reproductive health* applications. https://doi.org/10.17615/q5y3-2g70

2. Janusziewicz, R., Mecham, S. J., Olson, K. R., & Benhabbour, S. R. (2020). Design and Characterization of a Novel Series of Geometrically Complex Intravaginal Rings with Digital Light Synthesis. *Advanced materials technologies*, *5*(8), 2000261. https://doi.org/10.1002/admt.202000261

3. Young, I. C., & Benhabbour, S. R. (2021). Multipurpose Prevention Technologies: Oral, Parenteral, and Vaginal Dosage Forms for Prevention of HIV/STIs and Unplanned Pregnancy. *Polymers*, *13*(15), 2450. https://doi.org/10.3390/polym13152450 4. Carbon3D

of NORTH CAROLINA at CHAPEL HILL

METHODS

• 3D-Printing enables geometrically complex ring designs to alter drug release properties²

• CLIP overcomes limitations with conventional injection molding IVR production

)esign	Solid	GCD1	GCD2
rface Area mm ⁻¹)	0.53	0.57	6.28

References