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Background and Motivations

Future Directions

• Histones are modified with covalent marks after 

translation

• Trimethyllysine (Kme3) is a post-translational 

modification (PTM) often recognized through an 

aromatic cage configuration

• Cation-π interactions typically drive binding

• UHRF1 TTD-PHD unexpectedly binds tert-butyl 

norleucine (tBuNle) with equal affinity

Workflow

1. Synthesize H3K9me3(1-15)-Y and 

H3K9tBuNle(1-15)-Y peptides

2. Tune the Y191 aromatic cage residue with 

functional groups varying in electrostatic 

potential using Genetic Code Expansion (GCE)

3. Use Isothermal Titration Calorimetry (ITC) to 

determine the thermodynamic parameters of 

binding

• All mutants exhibit minimal perturbation in binding

• Binding to Kme3 is more enthalpically driven while 

binding to tBuNle is more entropically driven

• No correlations between free energy of binding and 

ESP, logP, or polarizability of the aromatic cage for 

Kme3 or tBuNle binding

• The aromatic cage within the TTD domain does not 

significantly influence binding to the H3 tail in the 

UHRF1 dual-domain system

• Favorable acidic contacts between various PHD 

domain residues and arginine 2 of histone 3 are 

likely responsible for binding

• Structurally alter PHD domain acidic contact points 

using similar mutagenesis studies to conclusively

determine whether the PHD domain drives binding

• Perform similar electrostatic tunability studies on 

the single-domain UHRF1 TTD system to 

determine whether the aromatic cage is intrinsically 

non-tunable or whether the addition of the PHD 

domain is responsible for its non-tunability.
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Figure 3. (A) ESP vs. free energy of binding to H3K9me3(1-15)-Y and 

H3K9tBuNle(1-15)-Y (B). logP vs. free energy of binding to H3K9me3(1-15)-Y 

and H3K9tBuNle(1-15)-Y 
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Figure 2. (A) H3K9me3(1-15)-Y structure (B) UHRF1 TTD-PHD aromatic 

cage interacting with H3K9me3 (C) Electrostatic potential map of the aromatic 

portion of para-phenylalanine derivatives

Goal to identify the forces driving binding in this 

system
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Figure 1. (A) Reader protein interacting with nucleosome (B) UHRF1 TTD-PHD 

interacting with H3K9me3 (C) Structures of Kme3 and tBuNle
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