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Coronin1A is a trimer whereas TRIM67 is a dimer.
Previous work from the lab has verified the
interaction between the two proteins, yet the

binding sites are undetermined.
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Loss of Coro1A inhibits netrin-mediated increases in axon branching density, axon length, and branch lengthIntroduction
Neuronal morphogenesis

(Ho and Gupton, Encycl. Biol. Chem. III., 2021) Loss of TRIM67 impairs netrin-mediated
axon branching

(Boyer et al., JCB, 2020)

Mass spectrometry to identify potential 
binding partners of TRIM9 and TRIM67

(Menon et al., MBoC, 2020)

(Boyer et al., JCB, 2020)

TRIM67 is required for netrin-dependent axon turning
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Conclusions
• Netrin-dependent axon branching responses and axon outgrowth were lost in Coronin1A knockouts
 - The loss of Coronin1A inhibited netrin-mediated increases in axon branching density, total axon length, and
    branch length
• The coiled coil domains of both Coronin1A and TRIM67 are required for their interaction
 - TRIM67∆RING∆CoiledCoil mutants could not effectively bind to Coro1A
 - Coro1A chimeras lacking the 1A Coiled Coil domain could not efficiently interact with TRIM67∆RING
 - Coro1B chimeras containing the 1A Coiled Coil domain significantly increased their interaction with
    TRIM67∆RING compared to full-length Coro1B 

• Determine if conserved residues in the coronin beta-propeller contribute to the low
   residual binding of Coro1A chimeras lacking the 1A Coiled Coil domain 
• Rescue experiments using Coro1A-/- neurons with full length and mutated Coro1A
   constructs
• Experiments on additional netrin-dependent axonal responses – such as axon 
   turning, axon regeneration, and synaptogenesis – that may be dependent on Coro1A
• Investigations on if Coro1A is netrin-specific using different guidance cues known to
   increase axon branching density in Trim67+/+ cortical neurons

Future Directions
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Expression of Coro1A in vitro

Coro1A binding domains of TRIM67
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Expression patterns 
of TRIM67 and 
Coro1A in vitro. (A) 
Immunoblotting of 
endogenous TRIM67 
and Coro1A from 
wildtype murine 
E15.5 cortical lysates 
obtained 24, 48, and 
72 hours after plating. 
During this develop-
mental period, the axon and dendrites of neurons are undergoing extensive 
changes and dramatically increasing in size, suggesting Coro1A may be vital in 
these early stages of neuronal morphogenesis. (B) Quantification of the in vitro 
expression of Coro1A normalized to β-III tubulin 24, 48, and 72 hours after neu-
ronal dissociation. *, P < 0.05.

Axon branching density and axonal outgrowth depend on Coronin1A. (A) Inverted LUT fluorescent images of Coro1A+/+ and Coro1A-/- neurons treated with either netrin or media. 
The arrow heads indicate axon branches. (B) Quantification of axon branching density per 100 µm for Coro1A+/+ and Coro1A-/- neurons with and without netrin treatments.  A Krus-
kal-Wallis nonparametric ANOVA test with Dunn’s correction was used for statistical analysis. (C) Quantification of total axon length (µm) for Coro1A+/+ and Coro1A-/- neurons with 
and without netrin treatments. An ANOVA with Bonferroni’s post hoc correction was used for statistical analysis. (D) Quanitification of individual branch lengths (>20 µm) for 
Coro1A+/+ and Coro1A-/- neurons with and without netrin treatments that contained branches. A Kruskal-Wallis nonparametric ANOVA test with Dunn’s correction was used for statisti-
cal analysis. For (B,C) n (cells) = 289 +/+ with media, 339 +/+ with netrin, 257 -/- with media, 273 -/- with netrin. For (D) n (cells) = 205 +/+ with media, 304 +/+ with netrin, 166 -/- 
with media, 165 -/- with netrin. *, P < 0.05; **, P < 0.01.
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Mapping the binding domain of TRIM67 
required for the interaction with Coronin1A. 
(A) Graphical depictions of the TRIM67∆
RING mutants used in co-immunoprecipitation 
assays with full length Coronin1A. (B, C, and 
D) Co-immunoprecipitation assays using 
TRIM67-/- HEK Cells transfected with various 
TRIM67∆RING mutants. Whole cell lysates 
were separated by SDS-PAGE electrophoresis 
and analyzed through immunoblotting. FL: 
Full-length TRIM67∆RING, CC: coiled coil, 
AA Block: Alanine block mutation.

Mapping the binding domains of Coro1A required for the interaction with 
TRIM67 (A) Graphical depictions of full-length Coro1A, full-length Coro1B, 
and the Coro1A/Coro1B chimeras used in co-immunoprecipitation assays with 
TRIM67∆RING. (B) Co-immunoprecipitation assays using TRIM67-/- HEK 
Cells transfected with full length and chimera coronins. Whole cell lysates were 
separated by SDS-PAGE electrophoresis and analyzed through immunoblotting. 
(C) Individual data points and violin plots of coprecipitated myc-TRIM67 rela-
tive to GFP-Coronins. 1A: Coronin1A, 1B: Coronin1B, β: β propeller, U: 
unique, CC: coiled coil.
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