Dinuri S. Fernando, Cameron D. Worthington and Gary L. Glish Introduction The federally illegal psychoactive compound Δ^9 -tetrahydrocannabinol (Δ^9 -THC) is a structural isomer to the following: cannabidiol (CBD), cannabichromene (CBC), Δ^8 -tetrahydrocannabinol (Δ^8 -THC), and Δ^{10} -tetrahydrocannabinol (Δ^{10} -THC), which are all federally legal under US law. CBD and CBC are non-

psychoactive structural isomers and show promise for treating chronic pain, inflammation and other conditions. Δ^8 -THC and Δ^{10} -THC are psychoactive and gaining popularity due to federal legality and with a few states criminalizing their sale. Differentiating these structures is challenging due to their isomeric nature. In this work, adduction of water molecules in a quadrupole ion trap

cannabinoid isomers using direct infusion mass spectrometry. **Experimental Setup**

Unreactive Fraction $(R_u) = \frac{I_{321}}{I_1 + I_2}$

Experimental Parameters

- Solvent comp: conc of cannabinoid and salt 10 μ M analyte in 95:5 MeOH:H₂O with 200 μ M lithium acetate
- Nitrogen drying gas flow rate and temperature were 5 L/min and 250°C, respectively.
- For DIMS experiments, the dispersion field was 42 kV/cm.
- Compensation field was scanned from 50 V/cm to 400 V/cm at a step size of 3.33 V/cm for the DIMS compensation field scans.
- Ion optics experiments scanned declustering potential from 20 V to 200V at step sizes of 20 volts.

Using Water Adduction to Differentiate Cannabinoid Isomers in a Quadrupole Ion Trap Mass Spectrometer

Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC

Cannabinoid	Relative Rate	Unreacted Fraction @ 250ms
CBD	4.530 ± 0.710	0.9375 ± 0.0062
CBC	70.83 ± 2.390	0.3892 ± 0.0149
Δ ⁸ - THC	66.22 ± 4.170	0.2519 ± 0.0317
Δ ⁹ - THC	120.3 ± 9.870	0.1222 ± 0.0261
Δ ¹⁰ - THC	53.00 ± 17.44	0.2840 ± 0.0289

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- shown in the compensation field scan of lithiated CBD (A) is a result of in source fragmentation of homodimer
- compensation field scan of lithiated THC (**B**) is resulting from lithiated THC adducting water (17% of signal) during composes 80% of the signal while f monomer composes 3%. Lithiated Δ^9 -THC homodimer fragments less than
- The DIMS was parked at 210 V/cm to selectively transmit THC homodimer and THC – CBD-d₉ heterodimer into heterodimer preferentially fragmented into CBD (**D**). CBD-d₉ fragments at high declustering potentials while THC does