Light mediated activation of hypertrophy signaling in cardiac cells Maya Groff, David Lawrence PhD, Lauren Haar PhD Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy

Introduction

Cyclic adenosine 3'5 monophosphate (cAMP) is a second messenger in cardiac growth signaling.¹

cAMP induces cardiac hypertrophy but has also been linked to protection against heart failure.²³

Optogenetic photoactivatable adenylyl cyclase from beggiatoa (bPAC) is a useful tool to induce cAMP with cellular and spatial-temporal control.⁴

Study Design

Procedure

Figure 3. ANP and BNP production in forskolin treated bPAC cells. Gel electrophoresis of PCR product of bPAC cells treated with forskolin for 3 hrs (50 μ M) and 24 hrs (25 μ M).

Figure 4. ANP and BNP production in light treated **bPAC cells.** Gel electrophoresis of PCR product of bPAC cells exposed to blue LED light for 1 s/hr for 3 hrs and 24 hrs.

Figure 5. ANP and BNP production in light treated **bPAC cells.** Gel electrophoresis of PCR product for ANP (top) and BNP (bottom) of bPAC cells exposed to blue LED light for 1 s/hr for 3 hrs.

Optimize forskolin treatment concentration for varying time points.

Optimal light-mediated cAMP activation conditions, exploring time and frequency of exposure.

Exploration of dark activity in bPAC.

- Biology. 2019, 26, 1393-1406.
- (8), 707-719.
- PMCID: PMC7968876.

Cain Foundation.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Conclusions

Further optimization of forskolin treatment conditions are needed (Fig 3).

ANP/BNP detected in light conditions, suggesting lightmediated cAMP activation (Fig 5).

ANP/BNP detected in dark conditions, suggesting dark activity (Fig 4).

Next Steps

References

1. O'Banion, C.; Vickerman, B; Haar, L; Lawrence, D. Compartmentalized cAMP Generation by Engineered Photoactivated Adenylyl Cyclases, Cell Chemical

2. Zoccarato, A.; Surdo, N.; Aronsen, J.; et all. Cardiac Hypertrophy is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2. AHA Journals. 2015. 117

3. Zaccolo M. cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol. 2009 Sep;158(1):50-60. doi: 10.1111/j.1476-5381.2009.00185.x.

4. Naim N, Reece JM, Zhang X, Altschuler DL. Dual Activation of cAMP Production Through Photostimulation or Chemical Stimulation. Methods Mol Biol. 2020;2173:201-216. doi: 10.1007/978-1-0716-0755-8_14. PMID: 32651920;