Characterization of the Novel Fluoride Resistant Gene *flr-3* in *C. elegans* Kendra Honey^{1,2}, Sarah Torzone^{1,2} and Rob Dowen^{1,2} UNC-CH School of Medicine¹, UNC Department of Cell Biology and Physiology² **Results Cont'd** Methods **Complementation Tests** Complementation rhdsi42;flr-3 x WT To determine if the *flr*-3 mutation is located within the *drl-1* locus, complementation tests were performed rhdsi42; flr-3 L4s were heat shocked to 2000 produce males rhdsi42;flr-3 x drl-1 Sigr (AU) Vitellogenin production is noted rhdsi42; flr-3 males were plated with drlby the Pvit-3::mCherry reporter 1 and *flr*-3 hermaphrodites F1 cross-progeny were picked as L4s drl-1 and imaged 24 hours later as day one rhdsi42;flr-3 x flr-3 rhdsi42:flr-3 adults **RNA Interference (RNAi)** pmk-1 and fshr-1 RNAi clones were streaked out on plates containing ampicillin and tetracycline Bacterial colonies were grown in Lysogeny Broth (LB) and seeded on Isopropyl β-D-1-Figure 3. drl-1 and flr-3 fail to complement. A) F1 progeny from a cross between rhdsi42;flr-3 and drl-1 mutants display reduced vit gene expression which is characteristic of both the *drl-1* and *flr-3* thiogalactopyranoside (IPTG) plates recessive mutations, indicating that *drl-1* and *flr-3* fail to complement. B) The reduction in *vit* gene Synchronous populations of expression in rhdsi42;flr-3 x drl-1 mutants is similarly observed in rhdsi42;flr-3 x flr-3 mutants, as noted by the reduction in fluorescent signal intensity. C) Small body size phenotypes are similar in L1 animals were dropped on MAPK *rhdsi42;flr-3 x flr-3* and *rhdsi42;flr-3 x drl-1* strains. plates and imaged as day one mutants adults Conclusions Results 1. flr-3 mutants have a phenotype that is small in body size, slow growing, and lipid MAPK3 devoid, much like *drl-1* mutants. 2. Known suppressors of *drl-1* also suppress *flr-3*, indicating that *flr-3* may work within the same pathway as *drl-1*. MAPK2) Pvit-3::mCherry 3. The *flr*-3 mutation fails to complement the *drl*-1 mutation, suggesting they may be located within the same locus. Wild-type MAPK E 0.10 **Future Directions** Ŧ 🏺 To confirm that *flr*-3 is an allele of *drl*-1, the *drl*-1 locus is to be sequenced in *flr*-3 Proliferation Growth HT115 mutants via Polymerase Chain Reaction (PCR) and Sanger sequencing • Previous attempts have resulted in unsuccessful binding of *drl-1* primers in *flr-3* rhdsi42 complex rearrangement Additionally, the same forward genetic screen for Figure 1. flr-3 mutants phenotypically resemble drl-1 mutants. A) flr-3 and drl-1 mutant growth and development is much slower when compared to wild-type mutations conferring fluoride resistance also identified animals. A more dramatic phenotype is observed in mutant animals on HT115. Therefore, *drl-1* and *flr-3* are required for growth and development. **B**) *flr-3* and *drl-1* 5; its genetic identity similarly remains unknown mutants are much smaller in body size when compared to wild-type animals, *flr-5* is thought to genocopy *flr-2* and suppress *drl-1* indicating that *drl-1* and *flr-3* are required for normal body size. C) The reduction in vit gene expression in drl-1 mutants is similarly observed in flr-3 mutants, as noted Whole genome sequencing of *flr*-5 identified T23B12.8 as by the absence of the vitellogenesis reporter. a candidate for the causative mutation

EXAMPLE 1 SCHOOL OF MEDICINE

Background

- > In C. elegans, vitellogenesis is the process by which lipid-rich particles are transported from adult intestinal cells to the germline oocytes, a mechanism analogous to low density lipoprotein (LDL) transport in humans
- Dysregulation of lipid homeostasis underlies human metabolic disease

in *rhdsi42* strains

- Previous work in the Dowen Lab has identified DRL-1 as a Mitogen Activated Protein (MAP) kinase responsible for proper growth and vitellogenesis in *C. elegans*
- > flr-3 genocopies drl-1, though its molecular identity remains unknown

Objectives

- 1. Characterize the *flr-3* mutation phenotypically. Does *flr-*3 genocopy drl-1?
- 2. Determine the genetic identity of *flr-3*.

А

• Future experimentation utilizing the CRISPR/Cas9 system to recapitulate the *flr-5* mutant phenotype would confirm T23B12.8 as the causative mutation of *flr*-5

[1] Chamoli, M., Singh, A., Malik, Y., & Mukhopadhyay, A. (2014). A novel kinase regulates dietary restriction-mediated longevity in Caenorhabditis elegans . Aging Cell, 13(4), 641–655. https://doi.org/10.1111/acel.12218 [2] Chung, K. W. (2021). Advances in understanding of the role of lipid metabolism in aging. Cells, 10(4), 880. https://doi.org/10.3390/cells10040880 [3] Katsura, I., Kondo, K., Amano, T., Ishihara, T., & Kawakami, M. (1994). Isolation, characterization and epistasis of fluoride-resistant mutants of Caenorhabditis elegans. Genetics, 136(1), 145-154. https://doi.org/10.1093/genetics/136.1.145 [4] Mortality in the united states, 2020. (2021). National Center for Health Statistics (U.S.). https://doi.org/10.15620/cdc:112079 [5] Perez, M. F., & Lehner, B. (2019). Vitellogenins—Yolk gene function and regulation in caenorhabditis elegans. Frontiers in Physiology, 10, 1067. https://doi.org/10.3389/fphys.2019.01067 [6] Van Sinay, E., Mirabeau, O., Depuydt, G., Van Hiel, M. B., Peymen, K., Watteyne, J., Zels, S., Schoofs, L., & Beets, I. (2017). Evolutionarily conserved TRH neuropeptide pathway regulates growth in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 114(20). https://doi.org/10.1073/pnas.1617392114

Special thanks to Dr. Rob Dowen and Sarah Torzone for their mentorship and expertise during this project, as well as all Dowen Lab members for their continued support!

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

mutants, suggesting that the causative mutation for *flr-3* may be a large deletion or

- PCR and Sanger sequencing of the T23B12.8 locus in flr-5 mutants identified a $G \rightarrow A$ point mutation at the 5' splice

mutation in first

codon of intron (5 splice site)

References

Acknowledgements

the Dowenlab

Created in **BioRender.com** bio