
Miniaturized medical implants that perform localized sensing, 
electrical therapy, or drug delivery functions hold great potential 
to innovate treatment and improve patient outcomes. However, 
traditional tethered implants create risks of infections, and 
battery power devices come with increased weight, a limited life 
span, and reduced overall device flexibility, all of which may lead 
to bulky devices and potential complications. Therefore, better 
means of power delivery are needed for implants to improve 
overall patient outcomes.

Here, we present a flexible, wireless power transfer (WPT) system 
based on magnetic resonance coupling (MRC) made of 
commercially available materials that can be integrated with 
medical implants to eliminate the need for batteries or wiring to 
an external power supply, thereby reducing potential 
complications, as well as improving patient comfort and overall 
quality of life. This device is characterized by the following 
features:

• Lightweight with size at the centimeter scale

• Delivery of high power up to 1.3W at the efficiency of 80% 
with Minimal heat dissipation in coils

• Minimal changes in resonance frequency due to distortion, 
bending, or twisting

• The Equivalent Circuit of the System

a) The Idealized Circuit of the System b)The T-Transformation of the Equivalent Circuit

• The Characteristic Impedance of the Circuit
The Impedance of a the RLC circuit in the load can be modeled as:
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Where k is the coupling coefficient. Due to the transmission and the receiving 
coil, share the same L, the mutual inductance can be modeled as M =

𝑘 𝐿1𝐿2 = 𝑘𝐿 .

• Voltage across the Load Resistor
Using KVL and KCL in the frequency domain, the voltage across the load 
resistor can be expressed as:

• Circuit Diagram of Experimental Measurement
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Introduction Methods Results

Theoretical Background
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The steady-state voltage across the load resistor can therefore be calculated 
numerically using MATLAB at different coupling factors as a function of 
frequency. This generates a maximum power transfer efficiency at the near-
resonant frequency with slight decreases at closer coupling states.

• Voltage, Power, and Efficiency at the Resonance Frequency

At resonance, the reactance  𝑋 = 𝑗𝜔𝐿 +
1
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goes to 0, rendering 𝑉𝐿 as
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The power delivered by the load resistor now becomes

𝑃𝐿 = 𝑉𝑆𝑅𝑀𝑆
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This equation has shown that when k and Q are relatively small (kQ<1) due to 
the small size of the coil, increasing Q and increasing k will lead to greater 
power delivered to the receiving coil at resonant frequency. For larger kQ
values, deviation from the resonance frequency, known as frequency split, 
was observed.

• Derivation of Time-Averaged Apparent Power and 
Transmission Efficiency:
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Where A is the Amplifier Gain and 40𝑑𝐵 = 20log10 𝐴 .
• Design, Fabrication, and Electromagnetic Finite Element 

Analysis of Flexible, Miniaturized Power Transfer Coil
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Finite Element Analysis Results: Figures 1 and 2 present the FEA results of 
horizontal offset and Separation distance effect on the Coupling Coefficient. Figure 3 
shows the transfer efficiency as a function of frequency at different coupling coefficients. 

Experimental Characterization Results: Figures 1,2 and 3 show the effect of 
separation distances, orientation angles, and horizontal offsets between coils on power 
transfer efficiency. Figures 4 and 5 show the effect of shape changes on frequency 
response and self-resonant characters. The infrared image in figure 6 shows minimal 
heat was dissipated by the coil with the majority of power delivered to the load.
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Biomedical Applications: Figure 1 and 2 shows the integration of the system with a 
sensory soft-robot implant for localized monitoring and electrotherapy. Figure 3 shows 
the integration of the system with a microneedle drug delivery implant for targeted drug 
delivery in human brain
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