A Cross-Validation Study of Model-Free Learning Tasks

Srinidhi Manivasagam¹, Jillian Battista¹, Charlotte Boettiger^{1,2}

¹Department of Psychology & Neuroscience, ² BRIC & Bowles Center for Alcohol Studies, UNC-Chapel Hill, NC

INTRODUCTION

- Substance use disorder (SUD) is characterized by the inability to abstain and control behavior such as alcohol craving toward the drug of abuse despite the negative consequences presented by the drug or the innate desire to change
- The process of decision-making is impaired in those struggling with addiction Decision-making is informed by both goal-directed and habit-based mindsets, which is specifically reflected in model-based and model-free learning
- models Those with model-based learning behaviors tend to utilize a cognitive model
- centered on possible actions and their consequences to better inform their decisions.
- Model-free learning models are based on habitual behavior developed through one's lifetime.
- The Spaceship Task vs the HABIT Task comparison
- We hypothesize that individuals who utilize model-free strategies in the spaceship task will also execute model-free behaviors measured in the HABIT task. Additionally, we hypothesize that individuals who utilize more model-based strategies in the spaceship task will exhibit less model-free behavior in the HABIT task.

METHODS

	Moon	Substance Use-Related	
	iviean	AUDIT Total	3.2 ± 3.5
Demographics		Consumption	2.37 ± 2.4
Age (years)	18.91 ± 1	Dependence	0.26 ± 0.6
SILS (calculated) IO	107.47 ± 5.7	Harm	0.57 ± 0.9
Education (years)	12.89 ± 1	FTO density (%)	1.39 ± 1.9 0.12 ± 0.1
Ethnicity (% white)	64		
BSMSS (SES)	17.86 ± 4.2	Psychometric	
000000000	17.00 ± 4.2	Perceived Stress	17.73 ± 5.8
Connors ADHD Scale		BIS Total	59.1 ± 9.1
DSM Inattention	6.91 ± 4.8	Attention	16.67 ± 3.4
DSM Hyperactivity	746+36	Motor	20.24 ± 2.8
DSM ADHD	14.37 ± 7.3	Internal-External Control (LOC)	11.22 ± 3.6
		STAI-State Anxiety	38 ± 9.6
1 Mandalan an 1 Manua a ma		STAI-Trait Anxiety	43.74 ± 10
Working Memory		Thought Action Fusion (TAF)	19.63 ± 13.8
OSPAN Score	43.74 14.1	Total	
OSPAN Total	58 46 + 9.6	Moral	15.96 ± 11.7
O DI Part Iotal	50.40 ± 5.0	Self	1.48 ± 2.2
Accuracy Errors	4.67 ± 2.3	Others	2.24 ± 2.7
Math Errors	6.13 ± 2.8	Obsessive-Compulsive Inventory (OCI-R)	13.72 ± 10.4

- 68 subjects: 36 F and 32 M
- Subjects were given Psychology 101 credit for their participation .

HABIT Task:

Spaceship Task

- 1st Session: questionnaires, spaceship task, HABIT Training
- 2nd Session: HABIT Test session
- Number of perseverative errors measured in the HABIT task was compared to ٠ the number of first-stage stays measured in the spaceship task through a Pearson correlation analysis.

novel set as expected on the HABIT task.

The highest probability of first stage stays was in the reward condition after a common transition

There was no difference in probability of first stage stay for the rare transition (reward vs no reward).

DISCUSSION

- The results found do not support our hypothesis as we did not observe a positive relationship between the number of perseverative errors committed in the HABIT Task and the first-stage stays in the Spaceship Task.
- HABIT Task has a very long training session, so running an additional ٠ spaceship task to conduct a within-subject confirmation of the participant's performance would be more effective.
- HABIT Task is very complex to learn, which could have influenced the learning methods participants use.
- The type of learning strategy that participants used in the HABIT task is likely not the learning strategy they used in the spaceship task.
- The small sample size is a limitation of the study. .
- In the future, we would like to look at task performance and AUDIT score as well as other psychometric variables, such as current perceived stress, impulsivity, and anxiety.

RESULTS

There were no differences between the novel nor familiar perseverative errors on the HABIT Task between model-based and model-free learners on the spaceship task ..

Overall, we did not find a correlation between the perseverative errors of the HABIT Task and the probability of first stage stays of the Spaceship Task.

REFERENCES

Decker, J. H., Otto, A. R., Daw, N. D., & Hartley, C. A. (2016). From Creatures of Habit to Goal-Directed Learners: Tracking the Developmental Emergence of Model-Based Reinforcement Learning. Psychological science, 27(6), 848-858.

McKim, T. H., Bauer, D. J., & Boettiger, C. A. (2016). Addiction History Associates with the Propensity to Form Habits. Journal of cognitive neuroscience, 28(7), 1024-1038.

ACKNOWLEDGEMENTS

We would like to thank the Dept. of Psychology and Neuroscience for the Lindquist Undergraduate Research Award (received by SM). Additionally, this work is supported by a parent P60 Grant (2P60AA011605-26) through the Bowles Center for Alcohol Studies. We would like to thank previous CABLAB members Sam Dove and Dr. Theresa McKim for their work formulating the study and collecting the data.

