

E. coli testing in Water Quality Monitoring

E. Coli is a significant drinking and recreational water contaminant that indicates the likely presence of other harmful microbes that can result in water-borne illness with contact⁵.

Current methods of E. coli testing

E. coli testing typically requires a lab procedure called membrane filtration that can be costly and time consuming. However alternate methods of E. coli culturing is being explored³.

 The Aquagenx GEL EC CFU Test allows for successful E. coli culturing in ambient air temperatures above 25°C (77°F) ⁶. The SafeHome DIY BACTERIA test kit provides a twostep presence- absence testing option.⁷

NC Water Quality Monitoring Accessibility

- •33% of the NC population rely on well water that is not regularly tested for contamination⁸.
- •Membrane Filtration lab testing for E. coli is not always accessible for households relying on private well water.
- Determining cost efficient, accurate E. coli test would increase at-home testing and accessibility to water quality monitoring in NC.

Research Focus and General Methods

- Immediate goal was to find an affordable, specific, sensitive, and easy-to-use at home E Coli test
- Incorporate findings into a testing kit that can be used in high schools in rural areas, potentially being implemented into curriculum as both an educational opportunity and assessment of students' water quality.
- Select tests based upon ease of use and cost first, then experimentally evaluate sensitivity and specificity of E. coli tests by comparing performance to membrane filtration.

Evaluating at-home E-Coli testing solutions to improve water quality testing in Eastern North Carolina **GILLINGS SCHOOL OF**

GLOBAL PUBLIC HEALTH Avery Matthews, Cole Seifert, Lauren McShea, Timothy Purvis, Michael Fisher, Amanda L. Northcross

Experimental Evaluation

Specificity and Sensitivity Evaluation Raw Data			
Wastewater Concentration	Membrane Filtration	Aquagenx GEL	SafeHome DIY
blank	 0 CFU 0 CFU 0 CFU 	0 CFU	Negative
10^-9	 1 non-E.coli coliform 0 CFU 0 CFU 	0 CFU	Negative
10^-8	 0 CFU 1 non-E.coli coliform 0 CFU 	0 CFU	Negative
10^-7	 2 non-E.coli coliform 0 CFU 0 CFU 	0 CFU	Negative
10^-6	 5 E. coli coliforms/ 20 non-E.coli coliform 5 E. coli coliforms/ 37 non-E.coli coliform 4 E. coli coliforms/ 38 non-E.coli coliform 	3 CFU	Positive
10^-5	 25 E. coli coliforms/ 130 non-E.coli coliform 31 E. coli coliforms/ 88 non-E.coli coliform 41 E. coli coliforms/ 150 non-E.coli coliform 	19 CFU	Positive
10^-3	TNTC TNTC TNTC	TNTC	Positive

Experimental Design and Next steps

- Next steps include:
- Further testing to obtain a greater amount of data to be used for specificity and sensitivity evaluation.
- Incorporation of previous data with data from this semester to use findings in an educational or household setting.

2020; 12(1):240. https://doi.org/10.3390/w12010240

- *Health*. 2017;107(1):180-185. doi:10.2105/AJPH.2016.303482
- 4D46A91B48E1?ref =ast bln through-multidisciplinary-
- February 2022].
- doi:10.1111/jam.13206

Statistical analysis of the Aquagenx GEL, Membrane Filtration, and SafeHome specificity and sensitivity results.

References

Bernardes C, Bernardes R, Zimmer C, Dorea CC. A Simple Off-Grid Incubator for Microbiological Water Quality Analysis. Water.

Brown J, Stauber C, Murphy JL, et al. Ambient-temperature incubation for the field detection of Escherichia coli in drinking water. J *Appl Microbiol*. 2011;110(4):915-923. doi:10.1111/j.1365-2672.2011.04940.x Elbing KL, Brent R. Recipes and Tools for Culture of Escherichia coli. Curr Protoc Mol Biol. 2019;125(1):e83. doi:10.1002/cpmb.83

Stauber C, Miller C, Cantrell B, Kroell K. Evaluation of the compartment bag test for the detection of Escherichia coli in water. J Microbiol Methods. 2014;99:66-70. doi:10.1016/j.mimet.2014.02.008

Stillo F, MacDonald Gibson J. Exposure to Contaminated Drinking Water and Health Disparities in North Carolina. Am J Public

https://www.amazon.com/stores/Safe+Home%3A+Water+Quality+Test+Kits/page/89586129-B926-4B99-BCEE-

Williams, E., 2022. Improving the Water Quality of Private Drinking Water Wells in North Carolina through Multidisciplinary Work UNC Environmental Spotlight. [online] Environmentblog.web.unc.edu. Available at:

https://environmentblog.web.unc.edu/2020/01/improving-the-water-quality-of-private-drinking-water-wells-in-north-carolina-

work/#:~:text=About%203.3%20million%20North%20Carolina,other%20small%20residential%20water%20systems.> [Accessed 3

•4. Marois-Fiset J-T, Shaheed A, Brown J, Dorea CC. Laboratory evaluation of a new coagulant/disinfectant point-of-use water treatment product for emergencies. Journal of Applied Microbiology. 2016;121(3):892-902.