In this project, we follow the popular theory of an early matter-dominated era (EMDE) that takes place after inflation but before the radiation-dominated era. During this time, we derive the final momentum distribution of collisions between relativistic leptons and non-relativistic dark matter particles.

PARAMETERS
- Initial and scattering angles: θ_i ($0, 2\pi$), θ_{CM} ($0, \pi$), and ϕ_{CM} ($0, 2\pi$).
- Masses: m_X and m_L.
- Initial momenta: p and k.

DEFINITIONS
Collision Term: C, the distribution, f_i, of dark matter particles is determined by the elastic scattering of the particles, X.
Collision Rate: Γ, the rate at which collisions between the dark matter particles and leptons occur.
Momentum Transfer rate: γ, the rate at which momentum is transferred between the two particles.

MOTIVATION
- Within an EMDE, the dominant particle during this time decays into radiation – the relativistic lepton.
- These leptons interact with dark matter particles, resulting in similar temperatures as defined by their momentum distributions.
- Once the interactions between the two particles decrease, a phenomenon called decoupling - the temperatures of the two particles diverge.
- The decoupling processes during an EMDE are complicated due to the presence of the relativistic leptons, which requires us to numerically simulate individual dark matter interactions.
- I am revisiting the scattering rate - derived from previous work - to find their final velocity distribution. This will help predict inhomogeneities within the structure of the Universe.

CONCLUSION
Compared to previous work by Charlie Mace in his thesis Simulating the Thermal Evolution of Dark Matter During an Early Matter-Dominated Era, there is a discrepancy of many orders of magnitude. Throughout the process of this work, there were a few inconsistencies. Most of these inconsistencies were different constant factors, however, there was a large disparity in the calculation of the collision operator integral. Further comparison to other studies of similar work must be done to converge on a final value for the collision rate of these interactions.

FINDINGS
- Using the final momenta of the particles, the collision rate of the interaction was derived.
- This rate is dependent on all the parameters mentioned earlier.
- Using the final momenta of the particles, the collision rate of the interaction was derived.
- The above value is used as it is in terms of the momentum transfer rate, γ. Once we have calculated γ, we can also calculate the time of decoupling between the particles and the resultant final velocity distribution of dark matter.