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Change in dry-state protection of GB1 upon freeze-drying in trehalose, glucose, sucrose, or maltose Protection of ADK activity against desiccation-induced inactivation. ADK (10 g/L) was mixed
’ ’ ’ ' with additives, desiccated, then rehydrated with 50 mM Tris-HCI pH 7.4, 50 mM KCI. Percent

A%Protected = %Protected.gygar — %Protected.q g The primary and secondary structure of GB1 (PDB 2QMT)
are shown at the top. Magenta circles indicate solution global-unfolding residues. Shaded boxes and open letters
indicate missing data from rapid back exchange. Error bars represent standard deviations propagated from
triplicate analysis.

Model proteins studied with LOVE NMR activity was determined by comparison to the same solution stored at 4 °C. Error bars represent

standard deviations from triplicate analysis. ADK control is with no excipient. Curves are a visual
guide but have no theoretical significance.
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