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Recurrent neural networks: specialized for time series data such as waveforms
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Network implemented in Pytorch
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The LEGEND Experiment Neural Networks Results

Compton Cameras Data Collection Future Work

• Neutrinoless Double-Beta Decay: 2n → 2p + 2e- (0νββ)

• Possible if the neutrino is its own antiparticle

• Direct observation of lepton number violation; could 

explain matter-antimatter asymmetry

• LEGEND: next generation 0νββ detector1

• Uses High Purity Germanium (HPGe) detectors for 

high energy resolution; Ge-76 acts as 0νββ source

• Identifying backgrounds during initial 200-kg phase 

key to creating background model for 1000-kg phase

• Co-60 source; two gamma peaks at 1172 

& 1330 keV used for study

• Source holder was designed to aim 

source at detector from different angles

• Detector cooled w/ liquid nitrogen, 

biased to +4000 V

• Data collected at 3 vertical positions, 8 

azimuthal positions

• Recurrent neural networks: 

specialized for time series 

data such as waveforms3

• Information retained from 

sequential inputs

• Network implemented using 

Pytorch library in Python

• Adapted from Aobo Li’s 

NetworkPSA model

• Recurrent layer feeds into 

fully connected network

• Classifies each waveform 

into vertical and azimuthal 

position classes

• Compton scattering: elastic collision between photon + 

charged particle → scattering angle related to 

magnitude of energy loss2

• Compton camera technique measures scattered 

photons to determine location of gamma source

• My Project: train neural network to reconstruct source 

position from waveforms to improve potential HPGe

detector Compton camera setups for LEGEND
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• Significant separation power for both vertical and 

azimuthal classes was found

• 70% average classification accuracy for vertical 

position classes indicates significant separation power

• Best at classifying top (z0) and bottom (z2) positions, 

worse for middle (z1) position

• Network had preference for two azimuthal classes; 

may indicate that detector was off-center in cryostat

• Explanation of azimuthal classification anomaly

• Simulations of gamma interactions with the detector 

could inform interpretation of result

• LEGEND-200 background identification

• Test network performance on low energy events

• Investigate backgrounds, with Compton camera 

technique, including liquid Ar scatter information
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Diagrams of Recurrent Neural Network (top)
and Fully Connected Network (bottom)
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