

Neural Network Analysis of Germanium Detector Waveforms

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

The LEGEND Experiment

- Neutrinoless Double-Beta Decay: $2n \rightarrow 2p + 2e^{-}(0\nu\beta\beta)$
- Possible if the neutrino is its own antiparticle
- Direct observation of lepton number violation; could explain matter-antimatter asymmetry
- LEGEND: next generation $0\nu\beta\beta$ detector¹
 - Uses High Purity Germanium (HPGe) detectors for high energy resolution; Ge-76 acts as $0\nu\beta\beta$ source
 - Identifying backgrounds during initial 200-kg phase key to creating background model for 1000-kg phase

Compton Cameras

Soo Mee Kim et al. DOI: 10.1088/0031-9155/58/9/2823

- Compton scattering: elastic collision between photon + charged particle \rightarrow scattering angle related to magnitude of energy loss²
- Compton camera technique measures scattered photons to determine location of gamma source
- My Project: train neural network to reconstruct source position from waveforms to improve potential HPGe detector Compton camera setups for LEGEND

Contact Information

Ravi Pitelka University of North Carolina at Chapel Hill rpitelka@live.unc.edu

Department of Physics and Astronomy, University of North Carolina at Chapel Hill

Neural Networks

- Recurrent neural networks: specialized for time series data such as waveforms³
- Information retained from sequential inputs
- Network implemented using Pytorch library in Python
- Adapted from Aobo Li's NetworkPSA model
- Recurrent layer feeds into fully connected network
- Classifies each waveform into vertical and azimuthal position classes

Data Collection

- Co-60 source; two gamma peaks at 1172 & 1330 keV used for study
- Source holder was designed to aim source at detector from different angles
- Detector cooled w/ liquid nitrogen, biased to +4000 V
- Data collected at 3 vertical positions, 8 azimuthal positions

References

1. LEGEND Collaboration, N. Abgrall, I. Abt, M. Agostini, A. Alexander, C. Andreoiu, G. R. Araujo, F. T. Avignone, W. Bae, A. Bakalyarov, et al., Legend-1000 preconceptual design report, 2021. 2. G. F. Knoll, Radiation detection and measurement, 3rd (John Wiley & Sons, Inc., 2000) 3. I. Goodfellow, Y. Bengio, and A. Courville, *Deep learning*, http://www.deeplearningbook.org (MIT) Press, 2016). Additional Image Credits: Aobo Li

Ravi Pitelka on behalf of the LEGEND Collaboration

Diagrams of Recurrent Neural Network (top) and Fully Connected Network (bottom)

Diagram of a Germanium Detector

- azimuthal classes was found
- worse for middle (z1) position

This work was conducted at Los Alamos National Laboratory through the US Department of Energy's Science Undergraduate Laboratory Internship (SULI) program, and at UNC. I would like to thank my research advisors: Julieta Gruszko, Ralph Massarczyk, and Steve Elliot.

• 70% average classification accuracy for vertical position classes indicates significant separation power Best at classifying top (z0) and bottom (z2) positions,

Network had preference for two azimuthal classes; may indicate that detector was off-center in cryostat

• Explanation of azimuthal classification anomaly • Simulations of gamma interactions with the detector could inform interpretation of result LEGEND-200 background identification • Test network performance on low energy events • Investigate backgrounds, with Compton camera technique, including liquid Ar scatter information

Acknowledgements