Effects of Lipopolysaccharide Immune Challenge on Microglial Activation and CD3+ T-cells in the Substantia Nigra of Female Rats

Mary Linares, Zhuo Yun Song, Sean Ahaotu-Simelane, Phoebe Pak, Samanyu Kunchanapalli, Shveta Parekh Ph.D

Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill

Introduction

- Parkinson’s disease (PD) is a debilitating motor disorder caused by dopaminergic neuron death in the substantia nigra that affects up to one million Americans.
- Previous research suggests that microglial activation and T-cell infiltration may be associated with PD.
- Few studies have looked at the combined role of CD3+ and microglia in PD pathology.
- The use of female animals in neuroscience research has traditionally remained low compared to the use of males.
- By examining the interaction between microglia and CD3+ T-cells in the substantia nigra of female rats, there is an opportunity to develop and examine new therapies for PD.

Hypothesis

CD3+ T-cells will be highly colocalized with the activated microglia in the substantia nigra of LPS treated rats compared to saline treated rats.

Experimental Design

Rat Brain Treatment

- LPS
- Saline
- 24 hrs
- Rats sacrificed by transcardial perfusion
- Brains extracted, post-fixed, and stored in 30% sucrose

Immunohistochemistry

- Brains sliced to 40 μm
- Immunostained slices with CO3 and Iba-1 antibodies with secondary green and red antibodies to visualize T-cells and microglia
- Image analysis with imageJ

Results

MICROGLIAL ACTIVATION BASED ON MORPHOLOGY

A Microglia Process Length

<table>
<thead>
<tr>
<th></th>
<th>Saline</th>
<th>LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Length (μm)</td>
<td>250</td>
<td>150</td>
</tr>
</tbody>
</table>

B Microglia Soma Size

<table>
<thead>
<tr>
<th></th>
<th>Saline</th>
<th>LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Soma (μm²)</td>
<td>75</td>
<td>50</td>
</tr>
</tbody>
</table>

COLOCALIZATION OF MICROGLIA AND T-CELLS

A IBA-1 Cell Count

<table>
<thead>
<tr>
<th></th>
<th>Saline</th>
<th>LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Cells</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>

B CD3+ Cell Count

<table>
<thead>
<tr>
<th></th>
<th>Saline</th>
<th>LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Cells</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>

C Colocalization of IBA-1 and CD3+

<table>
<thead>
<tr>
<th></th>
<th>Saline</th>
<th>LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Colocalization</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Discussion

- The results for colocalization were not significant, but the data shows a pattern of increased colocalization in LPS challenged rats. Therefore, the relationship between microglia and T-cells should continue to be explored in PD pathology and therapies.
- The results for IBA-1 & CD3+ cell count and microglial process length do support our hypothesis. Shorter process lengths indicate microglial activation, and the morphology of microglia in LPS challenged rats changed in this characteristic manner.
- Future directions for research:
 - Analysis of differentiated T-cell presence in the substantia nigra (SN)
 - Examination of cytokine presence to further investigate microglial activation in the SN

References

4. UNC College of Arts and Sciences & the Department of Psychology and Neuroscience for funding and support of the NSCI Laboratories.

We would like to thank Dr. Shveta Parekh, Sabian Martinez, and Elisabeth Kimmel for their mentorship and support in this project. We would also like to thank Don Joly for donating the rat tissue and the College of Arts and Sciences & the Department of Psychology and Neuroscience for funding and support of the NSCI Laboratories.