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Radon
• Chemical element with symbol Rn, number 86
• Radioactive, colorless, odorless, and invisible gas
• Naturally occurring product of  the decay of  uranium 

Exposure to radon
• Second leading cause of  lung cancer 
• Linked to strokes and other cardiovascular events
• Evidence of  recent increases in North America

Radon and climate change - climate change may indirectly 
influence rises in radon exposure due to…
• Increased HVAC use 
• Recycling of  indoor air

Kriging
• Popular spatial modeling algorithm
• Model is a Gaussian process with… 
• Mean – function of  covariates
• Covariance – function of  the spatial coordinates

Spatial dependence structure
• Nearby data is more similar than distant data
• Can cause artificially optimistic estimates of  model performance

Spatial blocking cross-validation
• Folds from standard 𝑘-fold CV → geographically distinct regions
• Provides more realistic measure of  model performance

Background

Methodology ResultsData
SRRS - EPA’s State Residential Radon Survey
• Series of  household-level short-term surveys 
• 63,291 homes, 42 US states and six US territories 
• Conducted between 1986 and 1992

GRP - USGS and EPA’s Geologic Radon Potential
• Constructed from geologic, atmospheric and residential 

survey data
• Three levels:
• “high” (estimated radon level > 4 picocuries per liter, 

or pCi/L) – zone 1
• “moderate/variable” (2–4 pCi/L) – zone 2
• “low” (< 2 pCi/L) – zone 3

Subset selection for example analysis
• 3 by 3 coordinate region in middle Tennessee
• 1247 homes across 256 zip-codes
• Relatively high spatial variability in GRP
• Suggests that we may see sharper fluctuations in radon 

concentration across space

Kriging
• One of the most common methods for linear interpolation
• Mean – linear function of  covariates
• Covariance – nonlinear function of  spatial coordinates

• Two analyses: one for SRRS, one for integrated SRRS+GRP

Latent process modeling
• Highly flexible modeling approach that allows for robust 

integration of  other data sources
• Specified in a Bayesian hierarchical formulation
• Allows us to condition the observed values on the so-called

latent process values
• Two analyses: one for SRRS, one for integrated SRRS+GRP

Alternative methods
• Locally estimated scatter plot smoothing (LOESS)
• Ensemble estimation
• Simple average of predicted values across all models above

Model validation
• 80/20 training/test split on the level of  zip-code, rather than 

individual observation
• Ensures that our training and test sets are independent and 

eliminates concerns with spatial dependence
• Mean absolute error (MAE) used to compare accuracy and bias 

used to compare the direction of  average error in predicted 
values

Methods

Future Work and Recommendations

Problem
• Radon levels are rising across North America, linked to trends in climate 

change
• Radon exposure is associated with lung cancer, strokes and other 

cardiovascular events
• Current estimates of  radon exposure are limited, classified into three 

levels at low spatial resolution

Aim
• Create a spatial model for the geographic distribution of  radon with 

some quantification of  uncertainty
• Incorporate data accounting for geologic, atmospheric, and residential 

factors
• Provide improved, granular estimates of  radon exposure

Solution
• Kriging, latent process modeling, alternative approaches
• Zip-code level model validation

Figure 1: example of  
county-level 

resolution US EPA 
map of  GRP radon 

zones in TN

Model MAE (pCi/L) Bias (pCi/L)
Kriging (SRRS) 2.112 -0.397
Kriging (SRRS+GRP) 9.941 +4.325
LPM (SRRS+GRP) 2.209 -0.416
LPM (SRRS+GRP) 2.071 -0.462
LOESS 2.329 -1.044
Ensemble estimation 2.059 -0.579

Integration of  additional data sets
• Base has been established for integrating additional data sets 
• Could extend the latent process modeling approach to include other data 

sets accounting for the individual factors used to construct the GRP

Temporal component
• More recent radon measurement data exists, including the National 

Residential Radon Survey (NRRS)
• May allow for forecasting of  changes in radon concentration across time

Bias in the sampling design, sampling weights
• We have not yet corrected for is the effect of  the biased sampling design 

of  SRRS
• Could leverage sampling weights to limit the effects of  strong outliers

Other modeling approaches
• Nearest neighboring measure 
• Inverse distance weighted mean

Further development of  second-stage model
• Ensemble approach currently uses a simple mean as the second stage
• More complex modeling techniques have been applied in multi-stage 

models for spatial data with promising results 


