Carbon Nanotube Stationary Head CT Scanner Prototype Evaluation Seth Tysor¹, Alex Billingsley², Christina Inscoe³, & Yueh Z. Lee^{3,4} (1) Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC PSYCHOLOGY & (2) Department of Biomedical Engineering, UNC-CH (3) Department of Physics and Astronomy, UNC-CH NEUROSCIENCE (4) Department of Radiology, UNC-CH

INTRODUCTION

Problem 1: Strokes

- Third leading cause of death (~750,000 yearly)²
- Prevalence has **increased by 60%** from 1999-2019³
- **15 million people** effected globally⁸
- **1 in 16 Americans** will die (~40 seconds)⁸
- Ischemic strokes caused by occlusion (clot) of blood vessel supplying the brain⁸
- Hemorrhagic strokes caused by ruptured blood vessel in internal or external brain strutures⁸

Problem 2: Traumatic Brain Injuries (TBIs)

- ~ 470,000 TBIs from 2000-2022¹³
- **Increase the risk for stroke by 69%**¹³
- Caused by sports/recreational events, military training/deployment, and explosions¹³

Problem 3: Military Environment

Unstable due to vibrations from explosions, extreme temperatures, humidity, air particles, and dangerous chemicals and machinery

Problem 4: CT Technical Limitations

- Heavy and are unable to be mobilized¹⁵
- Only 2-5% of patients receive thrombolytic treatment due to **transportation delay** to the hospital²³
- Struggle with producing **high quality** images due to low resolution, noise, artifacts that cause streaking, the inability to scan the entire subject due to physiological limitations, long scan times, radiation exposure, and multiple moving parts¹⁵

Solution: CNT s-HCT

- **Reduces scan time, decreases radiation exposure,** maintains adequate image quality, and lowers the weight of a clinical CT scanner¹⁶
- Eliminates need for **rotating gantry** by using a **fixed** geometry for complete visualization¹⁶
- **Durable and simple hardware** ensures functionality in austere environments¹⁶
- Utilizes a fan-beam and a collimator that reduces the effects of scattering for **improved image quality**¹⁶

HYPOTHESIS

~ By utilizing a **multisource** and **multidetector** carbon nanotube stationary head CT system, the resulting picture should be of *adequate* quality and allow physicians to accurately **detect**, **diagnose**, **and** treat strokes and traumatic brain injuries in harsh environments.

METHODS

CNT s-HCT Features

- Utilizes **ionizing radiation** to capture **2D images** from **multiple angles**
- **Reconstruction algorithm** generates **3D volume** data presented as stack of cross-sectional images
- Three linear CNT x-ray source arrays (tubes) and nine x-ray detector panels form hexagonal tunnel
- Acquires 135 projection images per slice
- Scanning rate of **5 millimeters per second**
- $CTDI = 7 mGy (10\% of Ceretom \mathbb{R})$
- Sample Size: Five participants who have undergone head trauma, intracranial hemorrhage (subdural or intraparenchymal), and/or skull fractures

Requirement Criteria

- Age/sex: 18 years or older and any sex
- **Stable** condition and provide written consent
- Must have **undergone CT head imaging** within the past 24 hours or will undergo a CT of the head

Main Goal

- Compare clinical and CNT prototype CT images with **Fiji software (**realignment and resolution adjustment) for a fair comparison
- **IRB Number: NCT04495634**

Figure A. Pictured above is a layout of the CNT prototype with its three linear CNT x-ray source arrays and nine x-ray detector panels that combine to form a hexagonal tunnel that the subject passes through while being scanned at a rate of 5mm per second.¹⁶

Figure B. Pictured above is a diagram that demonstrates the concept of the CNT x-ray multi-source array. The diagram shows how each of the three x-ray source arrays of the sHCT emits ionizing radiation at multiple angles to image each part of the subject's brain.¹⁷

RESULTS

Figure 1. Metal staples presented in sagittal slice of both the SIEMENS clinical head CT (top) and the CNT s-HCT prototype (bottom) of Subject 1

Figure 3. Calcifications in parietal lobe presented in coronal slice of both the SIEMENS clinical head CT (top) and the CNT s-HCT prototype (bottom) of Subject 5

Figure 2. Anterior cerebral artery (ACA) presented in sagittal slice of both the SIEMENS clinical head CT (top) and the CNT s-HCT prototype (bottom) of Kyoto

Figure 4. Calcifications in parietal lobe presented in sagittal slice of both the SIEMENS clinical head CT (top) and the CNT s-HCT prototype (bottom) of Subject 5

Figure 5. Pineal gland calcification presented in coronal slice of both the SIEMENS clinical head CT (left) and the CNT s-HCT prototype (right) of Subject 1

Figure 6. Frontal sinuses presented in transverse slice of both the SIEMENS clinical head CT (left) and the CNT s-HCT prototype (right) of Subject 4

•	
	a
	C
	b
•	
	i
	(
•	ľ
	a
•	F
	ľ

DISCUSSION

Limitations

• Under-sampling and beam hardening produced streaking artifacts; however, this is expected and must be combatted against for adequate visualization

• **Timing** issues occur when the prototype's detectors fall off the timing scale and misregister, resulting in glitches that caused **data loss**

Limited brain volume visualization due to prototype design limited coronal evaluation as subjects with shorter necks were blocked from being able to move through the entire gantry

IRB paused study due to permission for increasing radiation dose

Future Directions

The images produced demonstrated the prototype's ability to capture **bone**, **sinuses**, **airways**, and calcifications rather well; however, soft tissue was barely able to be visualized

Soft tissue visualization will be corrected for by increasing the radiation dose without exceeding the CTDI of a clinical head CT

Noise effects will be reduced by implementing additional **iterative reconstruction algorithms** Full subject scanning will be corrected through either prototype redesign or physiological exclusion criteria will be implemented

Increase population size (approved for 50)

REFERENCES

Anderson, J. A. (2016). Acute ischemic stroke: The golden hour. Nursing Critical Care, 11(3), 28-36. https://doi.org/10.1097/01.CCN.0000482731.69703.82 Astle, K. (2022, February 3). U.S. stroke rate declining in adults 75 and older, yet rising in adults 49 and younger. American Heart Association. Retrieved October 30, 2022, from https://newsroom.heart.org/news/u-s-stroke-rate-declining-in-adults-75-and-older-yet-rising-in-adults-49-andyounger#:~:text=From%201990%20to%202019%2C%20the,also%20increased%20by%20about%2020%25.

Brott, T., & Bogousslavsky, J. (2000). Treatment of Acute Ischemic Stroke. New England Journal of Medicine, 343(10), 710–722. https://doi.org/10.1056/NEJM200009073431007 Cauley, K. A., Hu, Y., & Fielden, S. W. (2021). Head CT: Toward Making Full Use of the Information the X-Rays Give. American Journal of

Neuroradiology, 42(8), 1362–1369. https://doi.org/10.3174/ajnr.A7153 Cramer, A., Hecla, J., Wu, D., Lai, X., Boers, T., Yang, K., Moulton, T., Kenyon, S., Arzoumanian, Z., Krull, W., Gendreau, K., & Gupta, R. (2018). Stationary Computed Tomography for Space and other Resource-constrained Environments. Scientific Reports, 8(1), 14195. <u>https://doi.org/10.1038/s41598-</u>

Department of Defense . (2022, November 17). DOD TBI Worldwide Numbers. Military Health System. Retrieved March 23, 2023, from https://www.health.mil/Military-Health-Topics/Centers-of-Excellence/Traumatic-Brain-Injury-Center-of-Excellence/DOD-TBI-Worldwide-Numbers Ebbesen, T. W. (1994). Carbon nanotubes. Annual review of materials science, 24(1), 235-264.

Grysiewicz, R. A., Thomas, K., & Pandey, D. K. (2008). Epidemiology of Ischemic and Hemorrhagic Stroke: Incidence, Prevalence, Mortality, and Risk Factors. Neurologic Clinics, 26(4), 871-895. https://doi.org/10.1016/j.ncl.2008.07.003 Hebb, A. O., & Poliakov, A. V. (2009). Imaging of Deep Brain Stimulation Leads Using Extended Hounsfield Unit CT. Stereotactic and Functional Neurosurgery, 87(3), 155–160. https://doi.org/10.1159/000209296

). Holmes, E. J., & Misra, R. R. (2017). Interpretation of Emergency Head CT: A Practical Handbook (2nd ed). Cambridge University Press. . Hsieh, J. (2009). Computed tomography: Principles, design, artifacts, and recent advances (2nd ed). Wiley Interscience; SPIE Press. . Kyoto Kagaku. (2020). PH-3 Angiographic CT Head Phantom ACS. https://www.kyotokagaku.com/en/products data/ph-3/ Merschel, M. (2023, January 24). Traumatic brain injury may raise veterans' long-term stroke risk. American Heart Association. Retrieved March 23, 2023, from https://www.heart.org/en/news/2022/03/03/traumatic-brain-injury-may-raise-veterans-long-term-stroke-risk

Mohammadinejad, P., Mileto, A., Yu, L., Leng, S., Guimaraes, L. S., Missert, A. D., Jensen, C. T., Gong, H., McCollough, C. H., & Fletcher, J. G. (2021). CT Noise-Reduction Methods for Lower-Dose Scanning: Strengths and Weaknesses of Iterative Reconstruction Algorithms and New Techniques. RadioGraphics, 41(5), 1493–1508. https://doi.org/10.1148/rg.2021200196 Moon, S., Choi, S., Jang, H., Shin, M., Roh, Y., & Baek, J. (2021). Geometry calibration and image reconstruction for carbon-nanotube-based multisource

and multidetector CT. Physics in Medicine & Biology, 66(16), 165005. https://doi.org/10.1088/1361-6560/ac16c1 5. Luo, Y., Spronk, D., Billingsley, A., Inscoe, C. R., Lee, Y. Z., Zhou, O., & Lu, J. (2022). Volumetric imaging and reconstruction with stationary head CT system using carbon nanotube x-ray source arrays. In W. Zhao & L. Yu (Eds.), Medical Imaging 2022: Physics of Medical Imaging (p. 36). SPIE. https://doi.org/10.1117/12.2612740

Luo, Y., Spronk, D., Lee, Y. Z., Zhou, O., & Lu, J. (2021). Simulation on system configuration for stationary head CT using linear carbon nanotube x-ray source arrays. Journal of Medical Imaging, 8(05). https://doi.org/10.1117/1.JMI.8.5.052114 B. Rajan, S. S., Baraniuk, S., Parker, S., Wu, T.-C., Bowry, R., & Grotta, J. C. (2015). Implementing a Mobile Stroke Unit Program in the United States: Why, How, and How Much? JAMA Neurology, 72(2), 229. https://doi.org/10.1001/jamaneurol.2014.3618 P. Rumboldt, Z., Huda, W., & All, J. W. (2009). Review of Portable CT with Assessment of a Dedicated Head CT Scanner. American Journal of Neuroradiology, 30(9), 1630-1636. https://doi.org/10.3174/ajnr.A1603

D. Shiber, J. R., Fontane, E., & Adewale, A. (2010). Stroke registry: Hemorrhagic vs ischemic strokes. The American Journal of Emergency Medicine, 28(3), 331-333. https://doi.org/10.1016/j.ajem.2008.10.026 Spronk, D., Luo, Y., Inscoe, C. R., Lee, Y. Z., Lu, J., & Zhou, O. (2021). Evaluation of carbon nanotube x-ray source array for stationary head computed tomography. Medical Physics, 48(3), 1089–1099. <u>https://doi.org/10.1002/mp.14696</u>

. Sun Nuclear Corporation. (2020). CT ACR 464 Phantom. https://www.sunnuclear.com/products/ct-acr-464-phantom . Walter, S., Kostopoulos, P., Haass, A., Keller, I., Lesmeister, M., Schlechtriemen, T., Roth, C., Papanagiotou, P., Grunwald, I., Schumacher, H., Helwig, S., Viera, J., Körner, H., Alexandrou, M., Yilmaz, U., Ziegler, K., Schmidt, K., Dabew, R., Kubulus, D., ... Fassbender, K. (2012). Diagnosis and treatment of patients with stroke in a mobile stroke unit versus in hospital: A randomised controlled trial. *The Lancet Neurology*, 11(5), 397–404. https://doi.org/10.1016/S1474-4422(12)70057-

Walter, S., Zhao, H., Easton, D., Bil, C., Sauer, J., Liu, Y., Lesmeister, M., Grunwald, I. Q., Donnan, G. A., Davis, S. M., & Fassbender, K. (2018). Air-Mobile Stroke Unit for access to stroke treatment in rural regions. International Journal of Stroke, 13(6), 568-575. https://doi.org/10.1177/1747493018784450