Modeling the AAV Rep Protein Towards Restricted Replication for Safer Gene Therapy

Leah Whitfield^{1,3,4}, Roger B. Sutton², Matthew L. Hirsch^{1,3,4} University of North Carolina at Chapel Hill¹

Texas Tech University Health Sciences Center², UNC Gene Therapy Center³, Carolina Eye Research Institute⁴

Introduction: Adeno-Associated Virus (AAV) is a reportedly helper-dependent and non-pathogenic virus. A capsid surrounds the 4.7 kb AAV genome flanked by hairpin-loop inverted terminal repeats (ITRs).² Rep proteins bind the Rep-Binding Element (RBE) on the ITRs and nick at the terminal resolution site (trs) through a catalytic tyrosine residue to replicate DNA.³ Rep proteins have three regions involved in this event, the DNA-Binding Loop (L_{DB}), α -D (α D), and α -E (α E) domains.⁴ Promiscuity in Rep binding/nicking of the ITRs among AAV serotypes and recombinant AAV genomes result in non-specific replication and safety concerns for AAV gene therapy.⁵

Fig. 1. Secondary Structure of ITR2. ITR2 secondary structure labeled with

Results: Previous reports have demonstrated that mutation of Y156 eliminates Rep-mediated nicking of the ITR.³ To determine the structural impact of this on the α E domain, modeling was performed using RoseTTAFold by substituting Y156 with A.^{6,7,8} The results demonstrate conservation of the α E helix (Fig. 4).

Fig. 4. Mutation of the Catalytic Rep Y156 to Alanine Preserved α E Helix Structure. RoseTTAFold was used for protein modeling.^{6,7} (A) The wild-type Rep2 (wtRep2) α E helix is shown in cyan with the catalytic Tyrosine (Y) in magenta.³ (B) wtRep2 Y156A was made by mutating Y156 to A. A is smaller and neutral nonpolar amino acid making it less reactive and less sterically hindering than Y, a neutral polar molecule.⁹

letter of nucleotide and ITR sequence positions.^{1,5} The RBE is boxed in pink, and the nicking site is labeled with an arrow.

Objective: The objective of this work is to rationally design a unique Rep/ITR functional origin of replication that cannot be cross-replicated by AAV Rep proteins found in nature.

Methods: As a first step towards the objective, protein modeling was used to guide rational mutagenesis. The Rep DNA binding/nicking region of AAV serotype 2 was modeled using RoseTTAFold and analyzed in PyMOL.^{4,6,7,8} The prediction demonstrates a DNA binding domain like helix-loop-helix conformations frequently observed in binding domains

Fig. 2. Labelled Structure of Rep2 Showing Binding Domains. Structure of wild-type Rep2 (wtRep2) in PyMOL with labelled domains.^{4,8} The cyan helix is the α D, the pink loop is the L_{DB}, and the purple helix is α E domain which contains the nicking Tyrosine marked in orange.³ It was **hypothesized** that duplicating the second turn of the α E catalytic domain (NYLLP) to create a third turn would create a unique nicking interface for later functional selection of a mutant ITR while maintaining the α E helical structure. Modeling of this mutant Rep protein (termed Rep <u>Triple Helix or thA, Fig. 3</u>) revealed that the α E helical structure was not maintained presumably due to proline helix-breakers that create steric hindrance.⁹ To test this, the proline residues located on each helical turn were changed to cysteine (termed thB, Fig. 3) and then modeled using RoseTTAFold.^{6,7,8,9} The results demonstrate that thB maintains α E helical structure with a single turn extension including a potentially catalytic tyrosine.

Fig. 5. Extension of the Rep α E Domain by a Single Turn while Preserving the Helix. (A) The extended α E domain (red box) on Y156A (Figs. 3, 4B) reveals helix disruption. (B) The sequence described in (A) with three proline to cysteine substitutions (Fig. 3) demonstrated conservation of α E helix in the presence of the additional inserted turn.

Conclusions:

Since nicking ability necessary for replication is thought to create specificity, altering the structural position of the nicking Y156 while maintaining the helical structure of the α E domain was investigated to restrict cross-replication of natural ITR structures.^{5,3} To do this, we first proposed mutation of the catalytic Y156 to alanine to eliminate the ITR nicking activity (Y156A, Fig. 3). Then, an α -helical turn with tyrosine was inserted on the C-terminus of the α E domain to create a triple helix (thA). Finally, helix-breaking proline residues that bracket the turns of the α -helix were mutated to cysteine to maintain the structural position of the nicking tyrosine (thB, Fig. 3).

SMVLGRFLSQIREKLIQRIYRGIEPTLPNWFAVTKTRNGAGGGNKVVDECXIPNALLPXXXXKTQI wtRep2 Y156A SMVLGRFLSQIREKLIQRIYRGIEPTLPNWFAVTKTRNGAGGGNKVVDECYIPNALLP.----KTQI thA SMVLGRFLSQIREKLIQRIYRGIEPTLPNWFAVTKTRNGAGGGNKVVDECAIPNALLPNYLLPKTQI thB SMVLGRFLSQIREKLIQRIYRGIEPTLPNWFAVTKTRNGAGGGNKVVDECAIPNALLPNYLLPKTQI aD **Fig. 3. Aligned Rep Amino Acid Sequences Show Conservation of Binding Domains and Extension of the αE Domain to Alter the Position of the Nicking Tyrosine.** Amino acids of wild-type AAV Rep serotype 2 (wtRep2) with labeled αD, L_{DB} , and αE domains.⁴ The catalytic Tyrosine is marked in orange.³ Rep mutants also investigated include Rep Y156A, extension of the αE domain by one helical turn (thA, red box), and thA with three proline residues substituted with cysteines (thB).

- Modeling of the Rep DNA binding and ITR nicking domain suggests a binding domain like helix-loop-helix
- Ablating the Rep tyrosine (Y156A) to eliminate ITR nicking did not alter αE helix conformation.
- Extending the αE domain by duplication of the second turn resulted in loss of helical structure
- Proline to cysteine substitutions on the extended turn of the αE maintained helical structure

Future Directions:

- Rep Mutant Production/Characterization. The mutant Rep proteins in Fig. 3 will be generated via site-directed mutagenesis and analyzed by Western analysis and AAV vector production (qPCR, reporter transduction).
- Rep thB Selection of a Mutant ITR. Rep thB will be used replicate and package transgenic genomes flanked by mutant ITRs in a CMV-GFP library. Capsid packaged ITRs will be sequenced and subjected to successive production rounds using Rep thB toward selection of a single ITR sequence.

Acknowledgements: Hirsch and Sutton Labs, Jackie Bower

ssDNA reveals a malleable AAA+ machine that can switch between oligomeric states. Nucleic Acids Research. 48(22):12983-12999. doi:10.1093/nar/gkaa1133. https://pubmed.ncbi.nlm.nih.gov/33270897/.

(5) Hewitt FC, Samulski RJ. 2010. Creating a Novel Origin of Replication through Modulating DNA-Protein Interfaces. Lesniak M, editor. PLoS ONE. 5(1):e8850. doi:10.1371/journal.pone.0008850.
(6) M. Baek, et al., Accurate prediction of protein structures and interactions using a three-track neural network, Science (2021). https://www.science.org/doi/10.1126/science.abj8754-

(7) I.R. Humphreys, J. Pei, M. Baek, A. Krishnakumar, et al, Computed structures of core eukaryotic protein complexes, Science (2021). https://www.science.org/doi/10.1126/science.abm4805-(8) DeLano, W.L. The PyMOL Molecular Graphics System (2002) DeLano Scientific, San Carlos, CA, USA. http://www.pymol.org.

(9) Why Proline Breaks Alpha Helix and Beta Sheet Structures, J. Kahn UMCP. wwwbiochemumdedu. https://www.biochem.umd.edu/kahn/teach_res/whynopro/.

 ⁽¹⁾ Kerpedjiev P, Hammer S, Hofacker IL (2015). Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics 31(20):3377-9.
 (3) Yoon M, Smith DH, Ward P, Medrano FJ, Aggarwal AK, Linden RM. 2001. Amino-terminal domain exchange redirects origin-specific interactions of adeno-associated virus rep78 in vitro. Journal of Virology. 75(7):3230-3239. doi:10.1128/JVI.75.7.3230-3239.2001. [accessed 2023 Apr 11]. https://pubmed.ncbi.nlm.nih.gov/11238849/.
 (4) Santosh V, Musayev FN, Jaiswal R, Zárate-Pérez F, Vandewinkel B, Dierckx C, Endicott M, Sharifi K, Dryden K, Henckaerts E, et al. 2020. The Cryo-EM structure of AAV2 Rep68 in complex with