

Introduction

- Polymers are large macromolecules composed of repeating subunits.
- Polymers can be used for drug delivery.
- Proteins can be covalently linked via bioconjugation.
- Pharmaceutical efficacy is related to the structural stability and circulation time.

Figure 1: BSA incorporated into a linear polymer and graft copolymer

Objectives

 Conjugate linkers and polymers with model protein BSA Analyze conjugation products for

> successful reaction

Figure 2: X-Ray Crystal **Structure of BSA (PDB:** 4F5S)

Site Selective Conjugation for Protein Therapeutics

Department of Chemistry, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC 27599

Benjamin Nguyen, Samantha Clouthier, Wei You

Data and Results

Conclusions

MALDI provided uncertain results Free thiol concentrations reduced after reaction **SDS-PAGE** indicates bioconjugation and protein aggregation

Future Directions

- Conduct MALDI again to confirm production of products
- Conjugate other
- proteins to polymer
- such as Fab
- Utilize graft copolymers

References

1.De, P.; Li, M.; Gondi, S. R.; Sumerlin, B. S. Temperature-Regulated Activity of Responsive Polymer–Protein Conjugates Prepared by Grafting-from via RAFT Polymerization. J. Am. Chem. Soc. 2008, 130 (34), 11288–11289. <u>https://doi.org/10.1021/ja804495v</u>. 2.Famili, A.; Crowell, S. R.; Loyet, K. M.; Mandikian, D.; Boswell, C. A.; Cain, D.; Chan, J.; Comps-Agrar, L.; Kamath, A.; Rajagopal, K. Hyaluronic Acid–Antibody Fragment Bioconjugates for Extended Ocular Pharmacokinetics. Bioconjugate Chem. 2019, 30 (11), 2782–2789. <u>https://doi.org/10.1021/acs.bioconjchem.9b00475</u>. 3.Tanaka, J.; Archer, N. E.; Grant, M. J.; You, W. Reversible-Addition Fragmentation Chain Transfer Step-Growth Polymerization. J. Am. Chem. Soc. 2021, 143 (39), 15918–15923. https://doi.org/10.1021/jacs.1c07553.

4.Tanaka, J.; Li, J.; Clouthier, S. M.; You, W. Step-Growth Polymerization by the RAFT Process. Chem. Commun. 2023, 59 (53), 8168-8189. https://doi.org/10.1039/D3CC01087B