

References

[1] Heldin, C. H., Rubin, K., Pietras, K., & Östman, A. (2004). High interstitial fluid pressure—an obstacle in cancer therapy. Nature Reviews Cancer [2] Deo, S., & Ansari, I. A. (2019). Brinkman flow through a porous cylinder embedded in another unbounded porous medium. Journal of Porous Media [3] Markov, M., Kazatchenko, E., Mousatov, A., & Pervago, E. (2010). Permeability of the fluid-filled inclusions in porous media. Transport in porous media [4] Luckett, P. M., Fischbarg, J., Bhattacharya, J. A. H. A. R., & Silverstein, S. C. (1989). Hydraulic conductivity of endothelial cell monolayers cultured on human amnion. American Journal of Physiology-Heart and Circulatory Physiology 5] Helton, E. S., Palladino, S., & Ubogu, E. E. (2017). A novel method for measuring hydraulic conductivity at the human blood-nerve barrier in vitro. Microvascular research [6] Chang, Y. S., Munn, L. L., Hillsley, M. V., Dull, R. O., Yuan, J., Lakshminarayanan, S., ... & Tarbell, J. M. (2000). Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvascular research

POLACHECK LAB

The Role of Viscous Drag in Angiogenic Sprouting

<u>Abel J. Abraham</u>, YunZen Wu, Elizabeth Doherty, Mitesh Rathod, William J. Polacheck

Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA

sprouting

cross section of collagen region

Analysis

To use this formula for drag, we used

$$k_{eff} = \frac{k(a^2(1+2C) - 12k(C-1) - 4a(1+2C)\lambda\sqrt{k})}{a^2(1-C) + 6k(2+C) + 4a(C-1)\lambda\sqrt{k}}$$

To measure k₂ for collagen we can use Darcy's law from FRAP experiments Darcy's law:

We add a third channel to allow flow past our vessel, more like our analysis. top view inlet - high pressure cells seeded flow port sealed

outlet - low pressure

Thanks to BME Dept. for support via the Lucas Scholar Fellowship and the Abrams Scholar program!

is kec ~ 10⁻²¹ m² so k₁ ~ 10⁻¹⁹ m²

