

proteir

Isoform 2 Alternative splicing increases proteome diversity through the production of multiple protein isoforms from a single gene. RNA-binding proteins (RBPs) influence the inclusion or exclusion of an alternative exon.

Alternative splicing is regulated during ventricle development and disease

RBPs regulate isoform expression of alternatively spliced genes during heart development^[1]. Reversion to abnormal fetal RBP expression in the ventricles can lead to cardiovascular disease^{[2][3]}. Similarly, we hypothesize that differentially expressed atrial RBPs may be vital for proper postnatal maturation of the atria through the regulation of age-specific splicing networks.

Some images created with Biorender.

CONCLUSIONS

- Developmentally regulated alternatively spliced genes are enriched in atrial functions
- FMR1 and RBFOX1 are putative regulators of alternative splicing in the atria and may be responsible for proper tissue development - There is a transition from the long to short Fmr1 splice isoform throughout heart development (more promiment in the ventricles) - There is no FXR1 protein compensation in the absence of FMR1

RNA Binding Proteins Regulate Alternative Splicing Networks During Postnatal Atrial Development

Aubriana N. Bishop¹, Gabrielle M. Gentile^{1,2}, R. Eric Blue¹, and Jimena Giudice^{1,2,3}

¹Department of Cell Biology and Physiology, ²Curriculum in Genetics and Molecular Biology, ³McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC

Rbfox1^{flox} Cre-lox mouse lines using atrial-specific gene delivery

- disease. Nat Rev Genet 17, 19-32 (2016).