
Algorithmic Approaches to MOLS Sliding Puzzle
Daniel Henderson, Maxim Chadaev

Introduction

The MOLS sliding puzzle is a type of sliding block puzzle similar to the famous 15-puzzle. The 

main difference is that instead of tiles numbered 1 through 15, it uses tiles with elements created 

from the cartesian product of two symbol sets. For our presentation, our two symbol sets will 

consist of four values and four suits of playing cards. The goal of the puzzle is to arrange the cards 

in such a way that there are no repetitions in suit or value across all rows and columns of the grid. 

An example of a solved and unsolved MOLS sliding puzzle is shown below.

Breadth-First Search (BFS)

Notation

There are two types of moves. A short 

move is when you move the empty 

space once in any direction. A long 

move is moving the empty space many 

times in the same direction.

Definition 1. Define a grid G to be a MOLS if it is solved. Define a grid G to be an MOS if it is 

solved or unsolved.

Definition 2. Let A and B be symbol sets of size 4. Then, 𝒢 (A,B) = {G | G is a MOS over A × B} 

and 

𝓛(A,B) = {G | G is a MOLS over A × B}. Notice that for all symbol sets A, B, it follows that 

𝓛(𝑨,𝑩) ⊆ 𝓖(A,B) . 

Definition 3. Define 𝜞ℓ to be the undirected graph with vertex set 𝑽 𝜞ℓ = 𝑮 𝑮 ∈ 𝓖} and edge 

set 𝑬 𝜞ℓ = 𝑮, 𝑮′ ∈ 𝑽 𝚪ℓ
𝟐 𝑮 ∈ 𝓖 𝒄𝒂𝒏 𝒃𝒆 𝒄𝒐𝒏𝒗𝒆𝒓𝒕𝒆𝒅 𝒊𝒏𝒕𝒐 𝑮′ ∈

𝓖 𝒘𝒊𝒕𝒉 𝒆𝒙𝒂𝒄𝒕𝒍𝒚 𝒐𝒏𝒆 𝒍𝒐𝒏𝒈 𝒎𝒐𝒗𝒆}. Define 𝚪𝒔 for short moves analogously.

Definition 4. Let 𝑮 ∈ 𝓖. Define the number of coincidences of 𝑮 as the sum of the number of 

repetitions it has in each row and column for both symbol sets A and B.

Definition 5. Define M as the average shortest amount of moves that it takes to get from a random 

𝑮 ∈ 𝓖 to any 𝑳 ∈ 𝓛. 

Average Number of Moves Model

One foundational method for determining the shortest path from any arbitrary configuration 𝐺 ∈
𝒢 to the closest MOLS 𝐿 ∈ ℒ is through the application of a Breadth-First Search (BFS) over the 

graphs Γ𝑠 and/or Γℓ, terminating on the first encounter of an element in ℒ. The benefit of this 

approach is that it ensures that, upon reaching L, the calculated distance between G and L 

corresponds to the minimal number of moves required to solve the puzzle. Furthermore, this 

approach will always find a solution given enough runtime and computational power, provided a 

path to a solution exists.

 Using this method, we found that solutions to the puzzle occur very rarely within 14 long moves 

(around 22 short moves) of a random configuration. Unfortunately, simulating any further down the 

graph costs too much computationally to be worthwhile. 

 Still, this algorithm can be used to help confirm the validity of a formula that estimates the 

average shortest path from 𝐺 ∈ 𝒢 to a 𝐺′ ∈ 𝒢 by seeing if the formula's predictions match the 

algorithm's results.

In this poster, we are only concerned with the symbol sets A = { , , , } and B = {A,K,Q,J}. 

For brevity, we will denote 𝒢 (A,B) and 𝓛(A,B) as 𝒢 and 𝓛 respectively. 

 Our goals are to find M and develop an algorithm to solve any configuration of the puzzle in a 

reasonably short, if not the shortest, number of long and short moves possible.

Introduction (cont.)

Unlike the 15-puzzle which only has 

one solution state, the MOLS sliding 

puzzle has 6912 solution states [1].

First, let us assume that MOLS are uniformly distributed in Γℓ. Next, we calculate the branching 

factor of Γℓ. We use our BFS to count the number of branches at each depth. We then use the 

Nelder-Mead method to minimize the mean squared error (MSE) and find the best fit b 

for 𝑦 = 𝑏^𝑥, resulting in 𝑏 ≈ 3.05. Given that the graph is tree-like, we estimate the average 

number of moves as 𝑀 ~ log3.05
16!

6912
≈ 20 long moves. 

Best-First Search (BeFS)

A method to find a short path from any configuration 𝐺 ∈ 𝒢 to the 

nearest MOLS 𝐿 ∈ ℒ is to use a Best First Search (BeFS) algorithm. 

Although BeFS does not ensure the shortest path, it offers a 

sufficiently short one efficiently. Like BFS, BeFS always finds a 

solution. It prioritizes states based on the number of coincidences 

and path length, favoring states closer to MOLS for child generation, 

thus increasing the likelihood of reaching one. This method was 

tested 382 times with random starts; a solution was reached every 

time.

Conclusion

We believe this game offers significant potential for advancements in AI, machine learning (ML), 

and deep learning (DL). The simplicity of the game's design contrasts with the complexity required 

for our algorithms, including the BeFS algorithm. The game's multiple solution states add 

complexity to assessing position quality. We invite the community to engage with our findings, as 

insights and discussions will enhance our understanding of ML's capabilities in game theory and 

decision-making.

[1] OEIS Foundation Inc. Sequence A072377, numbers n such that n = (product of digits of n^3). Online 

Encyclopedia of Integer Sequences, n.d. Retrieved April 21, 2024, from https://oeis.org/A072377.


	Slide 1

