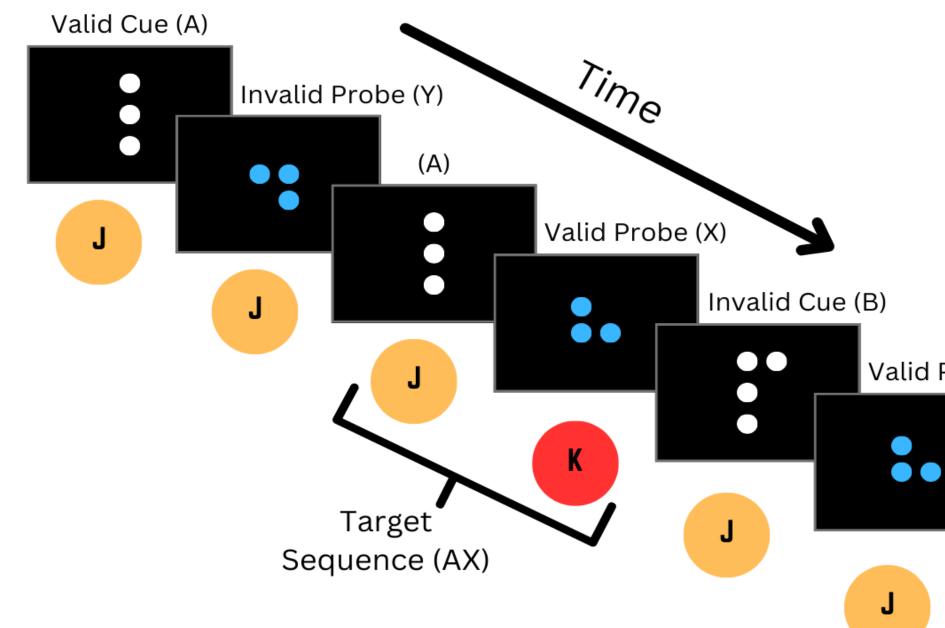
Image: College of Arts and Sciences Image: College of Arts and Sciences Psychology and Neuroscience COHEN LAB

Background

Chemobrain: Cognitive deficits experienced by patients after undergoing cancer treatment, specifically chemotherapy.¹ Literature shows *inconsistent* results regarding changes in

- cognitive function post-chemo.²
- Studies use a spread of neuropsychological tests to measure cognitive changes, which may *lack the sensitivity* needed to assess subtle differences in cognition.^{3,4}


We hypothesize that:

- 1. Experimental cognitive tasks are more sensitive to differences in cognition than neuropsychological tests.
- 2. BCS participants will show generalized cognitive decline.

Methods

Participants: 20 female BCS and 20 healthy controls (HC) between the ages of 30 and 75.

We administered 4 blocks of 40 trials each (160 total) of the **Dot Pattern Expectancy (DPX) task** to all participants.

Figure 1. Dot Pattern Expectancy Task Paradigm.

Table 1. Summary of Cognitive Domains Assessed and Task Measures Compared

Cognitive Domain	DPX Measure	Neuropsycholog
Processing Speed (Motor Function)	AX Trials Reaction Times	D-KEFS Trail Maki <i>Number Seque</i>
Working Memory	BX Trials Reaction Times & Accuracy	D-KEFS Trail Mak <i>TMT – B</i> <i>TMT – A</i>
Sustained & Selective Attention	All Trials (Accuracy)	d2 Test of Sustained Attentior
Response Inhibition	AY Trials Reaction Times & Accuracy	D-KEFS Trail Maki Number-Letter Seq
		D-KEFS Color-Word Inc

Measuring Chemobrain

Ritushree Dutta, Marc Rudolph, PhD, Claire Dees, MD, Keely Muscatell, PhD, Jessica Cohen, PhD

Valid Probe (X)

gical Test

king Test-A encing king Test-r

d & Selective

king Test-B quencing

congruency Test ndition

Experimental cognitive tasks may be *more sensitive* to changes in cognitive function than neuropsychological tests

Results

Measure	BCS	HC	p-value (<i>t_{stat}</i>)	Effect Size (<i>d</i>)
		Proces	sing Speed	
DPX AX RTs	0.434	0.423	0.4927 (0.693)	Small (0.219)
TMT-A	31.80	30.74**	0.7975 (0.259)	Negligible (0.0825)
		Workin	ng Memory	
DPX BX RTs	0.439	0.393	0.0482* (2.04)	Medium (0.646)
DPX BX Acc	0.870	0.898	0.4488 (-0.765)	Small (-0.242)
TMT-r	2.426	2.374 ⁺⁺	0.8604 (0.177)	Negligible (0.0568)
		Sustained & So	elective Attention	
DPX AX Acc	0.947	0.941	0.6491 (0.459)	Negligible (0.145)
DPX AY Acc	0.693	0.800^{+}	0.1065 (-1.657)	Medium (-0.536)
DPX BX Acc	0.870	0.898	0.4488 (-0.765)	Small (-0.242)
DPX BY Acc	0.950	0.898	0.1863 (1.350)	Small (0.427)
d2 Test TC	0.944	0.949	0.7513 (-0.319)	Negligible (-0.101)
		Respons	e Inhibition	
DPX AY RTs	0.570	0.522	0.0557 (1.983)	Medium (0.627)
DPX AY Acc	0.693	0.800^{+}	0.1065 (-1.657)	Medium (-0.536)
TMT-B	70.05	66.32**	0.6138 (0.509)	Negligible (0.162)
CWIT IC	49.75	50.94	0.7581 (-0.311)	Negligible (-0.101)

Table 2: Mean performance scores of BCS and HC groups on the DPX task and neuropsychological assessments. Cohen's d effect sizes were qualified as "Small" at d = 0.2, "Medium" at d = 0.5, and "Large" at d = 0.8, with values in between defaulting to the qualifier of the lower bound, and all values falling below d = 0.2 were considered "Negligible." Abbreviations: BCS = Breast Cancer Survivors, HC = Healthy Controls, AX = valid cue/valid probe trials, AY = valid cue/invalid probe trails, BX = invalid cue/valid probe trials, BY = invalid cue/invalid probe trials, TMT-A = Number Sequencing task, TMT-B = Number-Letter Sequencing task, TMT-r = TMT-B/TMT-A, TC = proportion of Total Correct answers, IC = Incongruent Condition. * p < 0.05, Calculations used ⁺N=17 data points or ⁺⁺N=19 data points

- Consistently observed *higher effect sizes for DPX* compared to neuropsychological assessments.
 - DPX may be more sensitive to subtle differences in cognitive performance between BCS and HC subjects.
- Except for reaction times on BX trials, no other differences in task performances were statistically significant.
 - Cognitive decline *may not be generalized*.
 - *Working memory* and *response inhibition* may be more vulnerable to effects of cancer treatment than other domains.
- Attention is *difficult to isolate* using behavioral measures.

Based on our results:

- assessments.
- attention.
- treatments.

Future directions: UNC CogMAP Research Study

- ✓ Longitudinal study.
- tests.
- ✓ Uses neuroimaging.

Ganz, P. A. (2012). "Doctor, Will the Treatment You Are 30(3), 229–231.

- 123(1), 35–37.
- 4. Myers, J. S. (2009). Chemotherapy-Related Cognitive Impairment: Neuroimaging, Neuropsychological Testing, and the 421.

UINEBERGER COMPREHENSIVE CANCER CENTER

Social Neuroscience & Health Lab

Cognitive decline due to cancer treatment may be *specific* to cognitive domains like inhibition and memory

Discussion

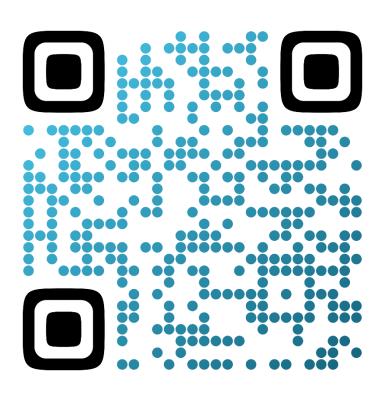
Cancer and cognition studies should *preferentially* administer cognitive tasks over neuropsychological

Neuroimaging can help elucidate structural and functional changes, especially with respect to

Future studies should consider *psychosocial factors* that may increase vulnerability to effects of cancer

Administers cognitive tasks and neuropsychological

✓ Assesses psychosocial factors using surveys. Collects blood samples to measure immune function.


References

Recommending Cause Chemobrain?" Journal of Clinical Oncology,

2. Vardy, J., & Dhillon, H. (2010). The fog hasn't lifted on "chemobrain" yet: Ongoing uncertainty regarding the effects of chemotherapy and breast cancer on cognition. Breast Cancer Research and Treatment,

3. Ahles, T. A., & Hurria, A. (2018). New Challenges in Psycho-Oncology Research IV: Cognition and cancer: Conceptual and methodological issues and future directions. Psycho-Oncology, 27(1), 3–9.

Neuropsychologist. Clinical Journal of Oncology Nursing, 13(4), 413–

