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/ Motivation \

As renewable energy sources like wind and solar gain traction, efficient
energy storage becomes crucial for grid stability. Redox flow batteries
(RFBs) offer promising solutions, with non-aqueous RFBs (NRFBs) showing
distinct advantages like wider temperature range and higher energy
density.? The solubility of active materials is a critical factor in
determining the energy density of NRFBs. However, synthetically exploring
a large parameter space to identify soluble species is an inefficient
approach. To expedite NRFB material discovery and optimization, this work
explores the transformative role of computation and machine learning.!

Objectives
1. Develop a quantum chemistry-informed machine learning (ML) model
to predict the solubility of ionic redox active materials.

2. Identify important design features for optimizing electrolyte solubility
and use ML model to predict solubility of new possible cations.

Methods
* Model system: alkylammonium vanadium R,
bis-hydroxyiminodiacetate
(V**:[cation]2[VBH]; V+5: [cation][VBH]) " ‘g,
Solvent. Acetonitrile

[VBH}>

« VBH solubility dataset: calculated using
4Gy, = AG,, + AG, = —RTIn(Se Vi)

Each thermodynamic term is taken from quantum chemistry calculations.
Contains 119 crystals for each oxidation state.

- Selection of relevant cation features for [VBH]? and [VBH]" subsets by
variance and correlation analysis.

« Training of various regression models with 80% of each subset, and
evaluation of these models with 20% of each subset making use of R?
and Root Mean Squared Error(RMSE) metrics. Models were created
using scikit-learn.?

« Comparison of relevant features for solubility prediction by importance,
for tree-based models.

« Calculation of relevant features for 500 unexplored quaternary
ammonium cation molecules from ChemBL database* using multiwfn> and
prediction of their solubility with [VBH]?-and [VBH]!- as anions using the
most accurate model.
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/ Results \

Cross plots of models for [VBH]* subset (similar for [VBH]" subset)
Model performance for [VBH]2- Subdataset
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Comparison of R?and RMSE for regression models

ADABOOST

R2COMPARISON OF MODELS FOR SUBDATASETS RMSE COMPARISON OF MODELS FOR SUBDATASETS

u [VBH]2- ® [VBH]1-
W[VBH]2 W [VBH]1-

075
0738

CATBOOST  DECISIONTREE ADABOOST ~ RANDOM
FOREST

708

RANDOM
FOREST

0.689

XGBOOST  CATBOOST DECISIONTREE

a7
I 1:.054

XGBOOST

Residual distribution of models for sub-datasets

[VBH]2- [VBH]1-

0014
0007

0012
0005

0005 0010
models
— AdaBoost
RandomForest
— xGBoost
— CatBoost
— DecisionTree
— LinearRegression

models

0004 0.008

Density

— CatBoost 0.006
— Decisionee

0003

0002 0,004

0001 0.002

0.000 1

20 20 -0 o o 20 3
residuals residuals.

0000 1

Feature comparison by importance for most accurate model(XGBoost)
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/Molecules with highest solubility prediction using most accurate \
model(XGBoost) with [VBH|?* anion
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Molecules with highest solubility prediction using most accurate
model(XGBoost) with [VBH]™ anion
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Conclusions

= Accurate models were trained and used to predict the solubility of [VBH]?
and [VBH]  based compounds depending on the cation properties.
Extreme gradient boost (XGBoost) was found to be the most accurate at
predicting solubility for our specific dataset.

= Unexplored quaternary ammonium cations predicted with high solubility
were identified.

= Target cation features were identified and ranked based on their
importance in solubility prediction for tree-based regression models. The
length of the molecule along the Z direction was found to be the most
relevant when predicting solubility for our particular model system.
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