# An Analysis of Suzuki-Trotter Decompositions for Quantum Thermodynamics 

## Rachel Emrick

## Math Background

The efficient and accurate calculation of matrix exponentials is crucial for running quantum thermodynamic simulations. However, this is a difficult computational problem!

- $\widehat{H}=\widehat{T}+\hat{V}$

Known: - $\hat{T}$ diagonal

- $\widehat{V}$ constant

What is the best approximation of $e^{-\beta \widehat{H}}$ using $e^{-\beta \widehat{T}}$ and $e^{-\beta \widehat{V}}$ ?

## Methodology

- Define different kinds of $T$ and $V$ matrices with similar structures to $\widehat{T}$ and $\hat{V}$
- Define parameters which could contribute to changes in accuracy
- Explore the efficiency of the approximation given by different Suzuki-Trotter decompositions
- Implement timesteps: $N_{\tau}$ is the number of steps

$$
e^{-\beta \widehat{H}}=\left(e^{\frac{-\beta \widehat{H}}{N_{\tau}}}\right)^{N_{\tau}}
$$

We compared methods of equal computational cost under different circumstances to decide which is best for this particular problem!

## Numerical Results

Weak bunching regime


Strong bunching regime



Higher-order methods most affected*

*Only for non-constant $V$ with large matrices!

## Physics Background

The Hamiltonian matrix $\widehat{H}$ describes a quantum system. Schrödinger's equation describes how the quantum system changes over time using $\widehat{H}$

$$
\hat{H}|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle
$$

Solve this differential equation to get the timeevolution operator

$$
\begin{aligned}
|\psi\rangle & =e^{-i \hat{H} t}|\psi, 0\rangle \\
|\psi\rangle & =e^{-\beta \hat{H}}|\psi, 0\rangle
\end{aligned}
$$

## Conclusions

- Identity $T$ was very resistant and mostly gave machine accuracy
- Constant $V$ experienced worse bunching for difficult versions of the problem
- Constant $V$ helped lower-order methods stay stable as problem became harder
- Non-constant $V$ with large matrices was the only situation where higher-order methods became worse than lower-order methods


## Q3 was the clear winner!

## Acknowledgements

This research couldn't have happened without my advisors, Profs. Joaquín Drut, Jingfang Huang, and Yifei Lou.

Also, thank you to Emily Huang, who has helped me through the whole process of writing and presenting this work.

This work was supported by the National Science Foundation under grant No. 2152289.

