

RESEARCH

Overview

- Vilya, Narya, Nenya (VNN) proteins aid in double-strand break (DSB) formations and crossovers
- Higher expression of these proteins is predicted to increase crossovers in meiosis, decreasing interference
- A transgene containing VNN was constructed to regulate gene expression to test our hypothesis
- The VNN transgene was followed in Drosophila crosses and an increase in crossovers was found
- Individual deletions of Narya and Nenya will also be made - ----

Figure 1. Image of the RING finger protein Vilya

Introduction

 Crossovers are required for segregation of chromosomes in meiosis; Without this process, nondisjunction may result which can result in certain chromosomal conditions (4)

Figure 2. Double Stranded Breaks allow for proper chromosome segregation

- Vilya is found within the synaptonemal complex (SC), a structure formed during meiosis before chromosome segregation
- It interacts with Mei-P22 to form DSBs (2)
- Sufficient Vilya is needed for crossovers to occur

Figure 3. Vilya, Narya, and .sc Nenya are found in recombination nodules (1, 2)

- Narya and Nenya have also been implicated in crossover formation in the SC
- They have been found to colocalize and interact with Vilya (1) in recombination nodules (RN) within the SC

This information indicates a role for VNN in crossover designation

RING Finger Proteins in Crossover Designation and Interference Emerson Frantz, Susan McMahan, Jeff Sekelsky

Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC

Figure 4 (left). Flowchart depiction of UAS::VNN assembly done via Goldenbraid cloning This construct was put into an aattB vector and then sent for injection into Drosophila

(UAS::VNN @ 6E)/Fm7 ; hodpPb/CyO

crossovers

Results

- Scored UAS::VNN Drosophila amplified with GAL4::nanos & GAL4::bam
- Compared against WT data and a negative control cross ■ n = 17713

Drosophila containing UAS::VNN transgene were crossed with Drosophila containing GAL4 drivers to activate gene expression

P{YFG::GAL4} on the X Females were collected and crossed with yw^1118 males and then screened for

Figure 5 (left). Crossover Levels for UAS::VNN Drosophila vs. WT

+: 0.77 *nanos*: 0.58 **bam**: 0.57

Future Directions

CRISPR/Cas9

- null

Conclusions

- role in crossover designation

Acknowledgements

Members of the Sekelsky Lab

References

1.Lake, C. M., Nielsen, R. J., Bonner, A. M., Eche, S., White-Brown, S., McKim, K. S., & Hawley, R. S. (2019). Narya, a ring finger domain- containing protein, is required for meiotic DNA double- strand break formation and crossover maturation in drosophila melanogaster. PLOS Genetics, 15(1). https://doi.org/10.1371/journal.pgen.1007886

2.Lake, C. M., Nielsen, R. J., Guo, F., Unruh, J. R., Slaughter, B. D., & Hawley, R. S. (2015). Vilya, a component of the recombination nodule, is required for meiotic double-strand break formation in drosophila. ELife, 4. https://doi.org/10.7554/elife.08287

3. Manheim, E. A., Jang, J. K., Dominic, D., & McKim, K. S. (2002). Cytoplasmic localization and evolutionary conservation of MEI-218, a protein required for meiotic crossing-over in Drosophila. Molecular biology of the cell, 13(1), 84–95. https://doi.org/10.1091/mbc.01-06-0318

4.Potapova T, Gorbsky G. 2017. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. Biology. 6(4):12. doi:10.3390/biology6010012.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Narya and Nenya will be looked at individually Marked deletions will be made using

• Narya \rightarrow mCherry; Nenya \rightarrow GFP; Vilya \rightarrow GFP Narya and Nenya believed to be redundant

UAS::VNN will be looked at with a mei-218

 Critical for crossover formation (3) To get quantitative data on the levels of UAS::VNN expression, qRT-PCR will be performed on Drosophila ovaries

> • Figure 7. Depiction of replacement of Narya with mCherry, creating a marked deletion

Crossover screening in Drosophila has revealed that there is a statistically significant increase in crossovers in Drosophila containing the UAS::VNN transgene, indicating that the three genes have a

While our sample size showed no significance in interference, it is likely that with a larger sample there would have been a significant decrease in crossover interference based on current knowledge of how designation and interference interact