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Introduction

Hydrogen bonding networks for the allosteric control of enzymatic

reactivity are common, but rarely employed in organometallic

catalysis.
A. Controlled enzyme catalysis via hydrogen bonding network gate
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Figure 1: (A) Hydrogen bonding gate in 3-carbonic anhydrase for
controlled bicarbonate formation.

Synthesis: Diethyl Amino Control Complexes
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Scheme 1: Cation addition to 18<®Ni'>NH,.

Characterization of H-Bonding Networks

Switchable Hydroamination

Figure 3: Crystal structures of F'NiNH,
(a) and 3¢®NiNH, (b) highlighting
conformational differences. H-bonding
network of 13<°NiNH, (c). Inter-atomic

distances given in angstroms (A).
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Facile substitution without supramolecular gate
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Scheme 2: Ligand substitution studies of F'INiNH; (a), 13®NiNH,
(b),Na*@13®°NiNH; (c) and 18Ni (d).

Table 1: Yields of hydroamination of crotonitrile with morpholine
catalyzed by Ni complexes with and without NaBArf4 after 48 hours.

N
A~

9 mol% Ni catalyst
0 or 5 mol% NaBAr

NH

N= \m+o

Chlorobenzene

20C,48 h
EININH, 18CONINH,
no Na* 70% 2.7%
with Na* 66% 23%
reactivity ratio? 1.0 59

aRatio of initial rates with and without NaBAr"4.

Figure 5: Hydroamination of crotononitrile with morpholine catalyzed
by 12¢NiNH,, with no salt additive (red squares) and with NaBAr*,

(green circles). [Oj
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Pincer-crown ether nickel complexes can be regulated by two

cofactors

(1) Ammonia ligand enabling H-bonding network between primary
and secondary coordination sphere

(2) Na*ion, which can break the network to form cation-dipole
Interactions

These interactions can be leveraged to enable switchable ligand

substitution and hydroamination of crotononitrile.
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