Artificial Intelligence Research Could Empower Pharmacovigilance in Sub-Saharan Africa Erin Mazur

Intr	odu	ction

SSA health systems require capacity building.

Need for Active PV in SSA

- Not in controlled setting of clinical trial
- High rates of ADRs

This project evaluates AI as a solution to current barriers and cooperation with HIC as mutually beneficial.

Methods

- Literature review
- Collective case study
 - 10 SSA LIMC
 - 7 Western HIC

Barriers	AI as a Solution
Lack of funding	Modest cost once trained
Clinicians lack time and training	AI system completes analysis
Sample size	Global data (VigiBase ³)

Cost of Preventable ADRs (USD/year)				
U.S. Alone	810 M ^{3,4}			
Global Average	152 M ⁴			
FDA PV Budget				
42.5	M ¹			
Cost of Developr	ment Chat Gpt3			
3.2	М			
Uses VigiBase Not Obligated to Use VigiBase Does Not Use VigiBase				
I as a Solution				
cost once trained				
m completes	••••			
data (VigiBase³)				

Discussion – Collaboration with HIC Capacity Building Developing technical infrastructure suitable for HIC and LIMC LIMC Increases Data Available for Training AI Systems not yet mature enough for widespread implementation Practical experience with implementation would provide valuable foundation Need numerous cases to test model's accuracy **Cost-Benefit Analysis** HIC donors already provide substantial funding to medication supply • GPT3 cost = 3.2 million Average HIC ADR Cost/Year = 152 million HIC can take on cost of training, still saving LIMC PV budget pays for microchips Conclusion Financing active PV via AI is mutually beneficial to HIC and SSA LIMC. Better detection of ADRs would provide a return on investment. This case study demonstrates a critical and economically justifiable role for active PV in protecting the health of the public.

Literature Cited

- Huybrechts KF et al. The Potential Return on Public Investment in Detecting Adverse Drug Effects. Med Care. 2017;55(6):545-551. doi:10.1097/MLR.000000000000717.
- Sultana J, Cutroneo P, Trifirò G. Clinical and economic burden of adverse drug reactions. J Pharmacol Pharmacother. 2013;4(Suppl 1):S73-S77.

3. Centre UM. Members of the WHO programme for International Drug Monitoring. UMC. Accessed April 17, 2024. https://who-umc.org/about-the-who-programme-for-international-drug-monitoring/member-countries/.

4. Gesundheit Osterreich; 2016.