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Horizontal dynamics of a walking particle

Plethora of particle’s dynamics on a vibrating interface

 We place a glass particle on a sinusoidally vi-
brated interface of two liquids and enable the par-
ticle bouncing. By carfully tuning the vibration 
strength and particle size, we find the particle can 
land on the slope of the self-emanating wave field 
and performs horizontal motions along the inter-
face,  known as “walking”.

 We approximate the vertical interfacial reaction force F by a damped linear-spring. To determine the two physical constants (spring constant and 
damping coefficient) which characterizes the spring, we introduce the restitution coefficient  Cr

┴ and contact time τc  as their new counterparts in our 
system. Such two physical constants can either be measured by observing a particle’s rebound from the quiescent interface; or we may regard the two 
number as fitting parameters and match with the bouncing modes reported in the experimentally observed phase map. Walking is denoted as     .

 We observed the preferred 
walking velocity increases and sat-
urates as increasing vibration. We 
compute the kick F received by the 
particle during each contact with 
the wave slope. Such contact not 
only creates a propulsion but also 
drag force FMD. Nevertheless, we 
performed the similar experiment 
to measure tangential restitution 
coefficient Cr

T which characterizes 
the energy loss in the horizontal 
frame. 

(a) Spin orbital coupling of two solid walkers in which they form a closed rotating orbit with quantized radii. (b) A type of chasing pair in which one solid particle is absorbed at the interface. 
(c) Particle collision induced by forcing two bouncers closer to each other. (d,e) Side-views of granular particle rafts self-disassemble on vibrating interface with progressively increasing γ. 
(f,g) Top-views of rafts before and after the self-disassembling.
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