Solid particles walking on a vibrating interface: Towards wave-mediated granular matter

Haoyu Ma ${ }^{1}$, Jian H. Guan ${ }^{1}$, Saiful I. Tamim ${ }^{1}$, Pedro J. Sáenz ${ }^{1}$

${ }^{1}$ Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA

PML $\begin{gathered}\text { MATHEALTICS } \\ \text { LABORATORY }\end{gathered}$ pml.unc.edu

Solid particle walking on a vibrating oil-water interface


Horizontal dynamics of a walking particle


We observed the preferred walking velocity increases and saturates as increasing vibration. We compute the kick $F$ received by the particle during each contact with the wave slope. Such contact not only creates a propulsion but also drag force $F_{\mathrm{MD}}$. Nevertheless, we performed the similar experiment o measure tangential restitution

$v(\mathrm{~mm} / \mathrm{s}) \quad 0.5 \quad 1.5 \quad 2.5$
We place a glass particle on a sinusoidally vibrated interface of two liquids and enable the particle bouncing. By carfully tuning the vibration strength and particle size, we find the particle can land on the slope of the self-emanating wave fiel
and performs horizontal motions along the interand performs horizontal m"


Vertical dynamics of a bouncing particle


