

Introduction

A growing body of evidence suggests that dementia is a result of the complex interplay between neurodegenerative and cerebrovascular processes, influenced by genetic, demographic, and lifespan environmental exposures. Current dementia prediction work relies on either biomarkers or itemized risk factors, lacking an integrated understanding of how neurobiological mechanisms interact with non-modifiable and modifiable risk factors and lead to diverse neurodegeneration trajectories.

Objectives

Develop and validate a deep systems biology model that integrates functional neuroimaging data with risk factors, including those associated with health disparities, to analyze the synergistic effects of health disparities and risk factors on dementia across diverse populations.

Deep RDM

- A reaction module for projecting the observed functional signals X to a latent state u.
- A diffusion module to model the transition of brain fluctuation states over time.
- each brain region with the notion of optimal control.
- predict dementia risk via supervised learning.

Explainable Dementia Prediction Using Functional Neuroimages and Risk Factors

Zhuoyu Shi, Tingting Dan, Patrick J. Smith, & Guorong Wu

Department of Psychiatry, University of North Carolina at Chapel Hill Department of Computer Science, University of North Carolina at Chapel Hill

Insula Lobe Parietal Lobe Frontal Lobe

METHODS $L = \frac{1}{2}u^T P u + \frac{1}{2}r^T Q r$ **Optimal control** du $\frac{dt}{dt} = Au + Br$ Dementia $\phi_{\theta}(t) = \sigma(\beta_1 u(t) + \beta_2 X(t) + \mu) \qquad \frac{du}{dt} = Au \quad - \qquad \nabla u = w_{ij}(u_i - u_j)$

• A control module to characterize the effect of health disparity and risk factors on the state of

• By concatenating the MLPs (for reaction process) and GNN (for diffusion process), we are able to predict the evolution of brain states u(t) over time and use the terminal state u_{τ} to

EXPERIMENTS

Data

We evaluated the dementia prediction accuracy and explored the multi-factorial mechanism of dementia risks on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. To ensure the availability of demographic factors, medical history, and functional neuroimages for each subject, we selected 250 samples from ADNI and processed the neuroimages with AAL atlas.

Prediction Accuracy & Ablation Study

- Health disparity and risk factors contribute substantially to imaging-based diagnoses.
- Our model achieves the highest prediction accuracy with the control constraint.

Age	71.69 ± 6.99	Methods	Input	Accuracy
Gender	52.80% Female	SVM	BOLD	66.00%
Education	16.05 ± 2.71		POID + Rick Factors	70 80%
Gait	10.00% Abnormal		DOLD + MISK Factors	/0.00/0
Cardiovascular Disease	62.40% Have Cardiovascular Disease	RNN	BOLD	61.33%
Other Neurological Diseases	38.40% Have Other Neurological Diseases		BOLD + Risk Factors	70.97%
Psychiatric Disorders	36.00% Have Psychiatric Disorders	Neuro-RDM	BOLD	71.00%
Alcohol Abuse	4.80% Have Alcohol Abuse		BOLD + Risk Factors	73.14%
Drug Aduse	1.20% Have Drug Abuse			
Smoking Status	38.40% Smoke	Our Method	W/O (LQR)	13.21%
Dementia Label	29.20% Dementia		w/ (LQR)	74.22%

Dementia Risk Factors

The *B* matrix elucidates the influence of each factor on the dynamic functional states of individual brain regions.

A System-Level Understanding of Brain Vulnerability Upon Health Disparities Following the notion of controllability, we calculated the smallest eigenvalue of controllability matrix $C = [B A B A^2 B \dots A^{T-1} B]$ for each subject to examine the vulnerability of brain function at each region to health disparity factors.

ACKNOWLEDGMENTS

Special thanks to Dr. Guorong Wu, Dr. Tingting Dan, Dr. Martin Styner, Jiaqi Ding, Ziquan Wei, Mustafa Dere, and Huan Liu for their support and guidance throughout my undergraduate studies. It has been a privilege to know you all and work with you all \heartsuit

Default Mode
Dorsal Attention
Sensorimotor