

INTRODUCTION

Introducing Computational Models to Clinical Diagnosis

- Diagnosis lays the foundation for other clinical activities
- Current clinical practice is imperfect & may have biased results
- Algorithms perform better
- 13% increase in accuracy using statistical predictions vs clinical methods
- Mechanical prediction substantially outperformed clinical prediction in 33%–47% of studies examined
- Superiority for mechanical-prediction techniques was consistent, regardless of the task, clinicians' amounts of experience, or the types of data being examined

Machine Learning

Algorithms that enable computers to learn from and make predictions or decisions based on data

	ML Models	Traditiona
Design Logic	Designed to learn patterns from data; self-adapted to changes & different data	Based on establ theories; require specificing mode selecting
Complexity	Capable of modeling non-linear relationships (multi-dimentional)	Simpler and for relationships ar
Interpretability	Less interpretable as a black box	More interpretabl formu

Variables

- PGBI-Depression & Hypo/Biphasic: The full PGBI has 73 items, with scores ranging from 0 to 3; 46 items focusing on depression & 28 items focusing on hypomanic/biphasic scales.
- PGBI10M: PGBI Mania scale; focusing on the items best discriminating bipolar from nonbipolar diagnoses
- PGBI-Sleep: Sleep disturbance
- PGBI 7Up & 7Down: Seven hypomanic/biphasic and seven depressive items selected for optimal psychometrics in a selfreport format

Variable	Nomogram	Logistic Regression	LASSO	SVM	RF
PGBI10M	Х	Х	Х	Х	Х
Family Bipolar History	X	Х	X	Х	Х
Sex		Х	X	Х	Х
Youth Age		Х	Х	Х	Х
Race		Х	Х	Х	Х
PGBI-depression			Х	Х	Х
PGBI-hypo/depression			X	Х	Х
PGBI-sleep			Х	Х	Х
PGBI 7 Up			Х	Х	Х
PGBI 7 Down			X	Х	Х
Diagnosis Count			X	Х	Х
Other Diagnoses			X	Х	Х
2-Way Interaction			Х	Х	Х

Comparing Machine Learning to Evidence-Based Decision-Making Techniques for Identification of Mood, Trauma, and Behavior Disorders

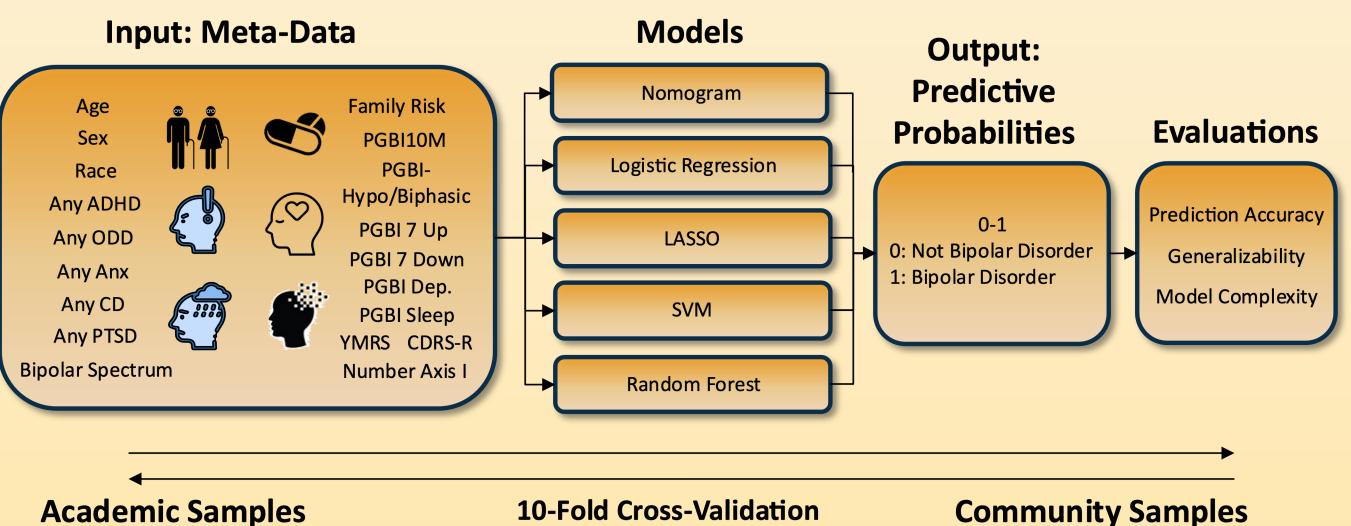
Zhuoyu Shi, Kalil Manara, Alberto Stefana, & Eric Youngstrom Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill

METHODS

nal Models

olished statistical re human help in el structure and variables

focus on linear and interactions


ole with clear math ulation

Data

- Age Range: Youths between 5-18 years old
- The academic dataset (*N* = 550) was collected at a clinic within a university's psychiatry department
- The community dataset (*N* = 511) was a randomly selected group that sought mental health and behavioral services for their children

	Community Dataset (N = 511)	Academic Dataset (N = 550)	Effect Size
Demographics			
Age, Years (SD)	10.53 (3.41)	11.40 (3.23)	.26
Male, % (n)	60% (205)	60% (217)	.01
White, % (n)	6% (31)	79% (433)	.74
Clinical Scales			
PGBI10M	7.47 (6.35)	10.13 (7.88)	.37
PGBI-hypo/biphasic	19.70 (14.22)	24.66 (16.84)	.32
PGBI-depression	24.48 (21.49)	36.19 (25.67)	.49
7 Up	4.11 (3.83)	5.16 (4.61)	.25
7 Down	3.21 (4.04)	6.24 (5.28)	.64
PGBI-sleep scale	4.06 (4.18)	5.87 (4.74)	.41
Family History of Bipolar	32% (165)	35% (194)	.03
Any Attention-Deficit/Hyperactivity	66% (338)	54% (295)	13
Any Oppositional Defiant Disorder	38% (196)	30% (167)	08
Any Conduct Disorder	12% (61)	8% (44)	07
Any Anxiety Disorder	27% (138)	8% (45)	25
Any Posttraumatic Stress Disorder	11% (54)	2% (11)	18

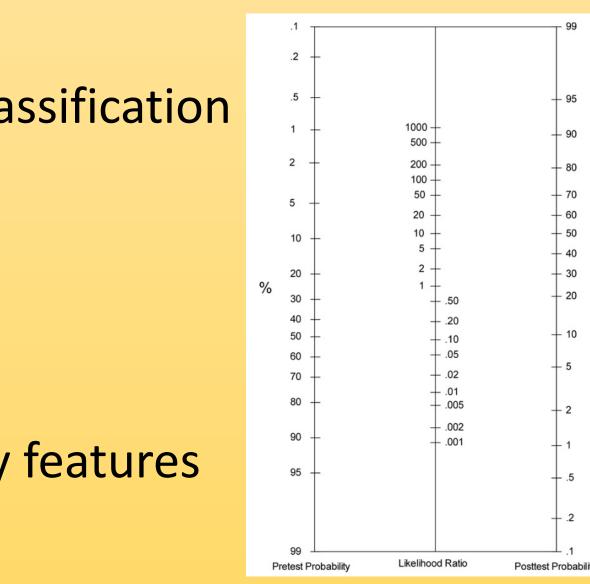
Analysis Pipeline

Academic Samples

10-Fold Cross-Validation

MODELS

Nomogram


- A graphical calculating device
- An efficient way to compute results with pencil & paper
- High interpretability

Logistic Regression

- A statistical method for binary classification
- Binary classification problem
- High interpretability

LASSO

- Regression model
- Classification problem with many features
- Medium interpretability

Support Vector Machine

Random Forest

- Linear Ensemble Learning method
- parameters

AUC Comparison

* Benchmark models from Youngstrom et al. 2018 study

Model		mic Dataset I = 550)	Community Datase (N = 511)	External Cr	Shrinkage upon External Cross- Validation	
Multipredictor Nom	nogram*	.882	.775	.107		
Logistic Regressior	n (5df)*	.890	.775	.115		
LASSO*		.902	.801	.101		
Reversed LASS	GO*	.864	.830	.034		
SVM		.926	.737	.189		
Reversed SVI	M	.713	.843	.130		
Random Fore		.999	.791	.208		
Reversed Random Forest		.824	.999	.175		
Diagnosis Upper		.925	.925	0		
		.725	., 25			
Factors Rank	ing					
<pre>> print(academic_impo bh10: comorbid bh10: lbhpgb9 bh10: lbhpgb9 bh10: bgbi7up lbhpgb9: comorbid bfamrisk: lbhpgb9 aaechild: bh10 lbhpgb9 bh10: bfamrisk Academic Dataset</pre>	Feature bh10:comorbid bh10 bh10:lbhpgb9 bh10:pgbi7up lbhpgb9:comorbid bfamrisk:lbhpgb9 ggbi7up:lbhpgb9 agechild:bh10 lbhpgb9 bh10:bfamrisk	Importance 9.1704430 8.5284341 7.9391436 7.6009621 7.2148100 6.2774417 6.2660001 6.0912290 5.4869276 5.1746328 ng Data	<pre>> print(community_) lbhpab9:comorbid bh10:comorbid pgbsleep:lbhpgb9 aaechild:lbhpgb9 gbi7up:comorbid ldeppgb9:comorbid pabi7down:lbhpab9 bh10:lbhpgb9 gbsleep:ldeppgb9 gbsleep:comorbid</pre>	<pre>importance_df_sorted Feature lbhpgb9:comorbid bh10:comorbid pgbsleep:lbhpgb9 agechild:lbhpgb9 pgbi7up:comorbid ldeppgb9:comorbid pgbi7down:lbhpgb9 bh10:lbhpgb9 pgbsleep:ldeppgb9 pgbsleep:comorbid</pre>	Importance 2.0208863 1.8256973 1.7698587 1.7362529 1.5570592 1.5568081 1.5511001 1.5182587 1.5015342 1.4865265	
<pre>> print(academic_internal_importance_df_sorted)</pre>			<pre>> print(community_i)</pre>	nternal_importance_	df_sorted)	
bh10:comorbid bh10:bfamrisk bh10:Ldeppgb9 bh10:pgbi7up bfamrisk:anyadhd	Feature bh10 bh10:whiteyn1 bh10:lbhpgb9 bfamrisk:lbhpgb9 bh10:comorbid bh10:bfamrisk bh10:ldeppgb9 bh10:pgbi7up bfamrisk:anyadhd whiteyn1:lbhpgb9	<pre>Importance 6.4847853 6.3715946 5.9517822 5.8307835 5.7483715 5.7340437 5.5829160 5.4779405 5.2055279 5.1277685</pre>	bh10:comorbid pgbsleep:lbhpgb9 agechild:bh10 agechild:pgbi7up bh10:pgbi7up bh10:bfamrisk ldeppgb9:comorbid pgbi7down:comorbid pgbsleep	Feature bh10:comorbid pgbsleep:lbhpgb9 agechild:bh10 agechild:pgbi7up bh10:pgbi7up pgbi7up bh10:bfamrisk ldeppgb9:comorbid pgbi7down:comorbid pgbsleep	Importance 5.4619903 5.4387119 5.3658218 5.0389239 4.9526968 4.5682268 4.5658583 4.5339432 4.5245807 4.4297456	

bh10	
bh10:whiteyn1	bh10:wł
bh10:lbhpgb9	bh10:
bfamrisk:lbhpgb9	bfamrisk:
bh10:comorbid	bh10:co
bh10: <mark>bfamrisk</mark>	bh10:bt
bh10: <mark>ldeppgb9</mark>	bh10:la
bh10:pgbi7up	bh10:p
bfamrisk:anyadhd	bfamrisk:
whiteyn1:lbhpgb9	whiteyn1:

ACKNOWLEDGMENTS

Special thanks to Dr. Eric Youngstrom, Dr. Alberto Stefana, and Kalil Manara for making this idea possible. In addition, thanks to Dr. Aysenil Belger and Dr. Oscar Gonzalez for their guidance as a part of my honors thesis committee.

• Supervised learning model used for classification and regression • Widely used in different classification problems • Low interpretability, less intuitive with N-dimensional

• Handling a large dataset with higher dimensionality while generating high accuracy predictions with less tuning of

• Low interpretability, as it is an ensemble method

RESULTS