Computational Modeling of Electrocardiogram Signals Preetam Tanikella

Background

Novel cardiac electrophysiology models are being developed to simulate the complex electrical systems of the heart. These models combine experimental data and mathematical algorithms to help researchers investigate normal cardiac rhythms, identify abnormalities, and create new therapeutic interventions for cardiac disorders.

ECGs are the primary clinical tool used to understand the heart's electrical activity. By calculating the electrocardiogram (ECG) traces for these cardiac electrophysiology models and comparing them to clinical data, we can improve the validity of these models and further our understanding of the relationship between heart function and ECG patterns used in clinical practice. One such method to compute ECG traces is the ϕ_e recovery method.

Extracellular Potential Recover Method

$$\phi_e = \frac{1}{4\pi\sigma_b} \int_{\Omega} \frac{\beta I_m}{||r||} d\Omega$$

Where σ_h is the conductivity tensor of the extracellular bath, β is the surface to volume ratio, r is the distance vector between the electrode and the source, and I_m is transmembrane currents.

$$I_m = C_m \left(\frac{\partial V_m}{\partial t}\right) + I_{ion}$$

Where C_m is the membrane capacitance per unit area, V_m is the transmembrane voltage, and I_{ion} is the total membrane ionic current density.

The solution to the equation can be approximated through the finite element method and Euler's Method:

$$\phi_{e} = \frac{\beta}{4\pi\sigma_{b}} \Sigma_{DoFs} \frac{C_{m} * M \left[\frac{V_{m}^{n+1}(DoF) - V_{m}^{n}(DoF)}{||r_{electrode} - r_{DoF}||} + M\right]}{||r_{electrode} - r_{DoF}||}$$

Where M is the Mass Matrix and DoF is each degree of freedom.

 $M[I_{ion}(DoF)]$

		Tis	ssue	Set
	0.50 0.05 0.1 0. 0.45 0.4 0.35 0.3 0.25 Z Axis 0.15 0.1 0.05			^s 0.55 0.6 0.6
	-0.1 Y Axis ⁰ 0.05 0.1 0.15 0.2	0.25 0.3 0.35	0.4 0.45 0.5 X Axis	0.55 0.6 (
●	1.0 x 0.01 x 0 tissue with a).5 cm (x total of	x, y, z) re 7000 el	egular Iemen
	σ_l (fiber direction)	σ_t (cross-fib	er direction)	$\sigma_n(cross)$
	0.574 mS/cm	0.222	mS/cm	0.2
•	The surface to The ionic mo was used to the myocard The tissue ha resting poter The transme monodomain	to volun odel Ten represe ial tissu ad a me ntial of - mbrane n model	ne ratio Tussche nt the ce e mbrane 86.2 m voltage	(β) wa er-Pan ell me capac
	St	imu	atio	n P
	35 30	Tran	ismembrane Voltag	je at (0.5, 0.0 ⁻
	25 20 15 10 5 0 () -5 -10 -10 -10 -10 -10 -10 -20 -25 -25 -25 -25 -25 -25 -55 -60 -55 -60 -55 -60 -65 -70 -75			

• A transmembrane current pule of 50 $\frac{\mu A}{cm^2}$ was applied to the slab over 1 ms along the volume of $X \le 0.1$ cm causing propagation along the x axis.

Time (ms)

The simulation took place over 300 ms with an ODE timestep of 5 μ s

hexahedral finite element nts and 14342 nodes

-fiber direction) $\sigma_{\rm b}$ (extracellular bath) 10 mS/cm 222 mS/cm

vas set at 1400 cm^{-1} nfilov 2006 (TP06) model embrane dynamics within

bacitance of
$$1 \frac{\mu F}{cm^2}$$
 and a

computed by a

rotocol

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Augmented Monodomain Model for the Cardiac Source. *IEEE Trans. Biomed. Eng.* 58, 2297–2307. 10.1109/TBME.2011.2148718 Reference two