
Data source and Labeling
The data used in this study comes from COMP 116 taught in Fall 
2020 by Professor John Majikes, a fundamental-level Python course. 
The dataset consists of solutions to two questions from 
Assignment 2, submitted by 198 students. These questions involve 
basic string manipulation tasks, making them suitable for evaluating 
code clustering methods and outlier detection algorithms.

Past research in code comparison has categorized code similarity 
into three levels: purpose, algorithm, and implementation:
• Purpose
 What question does this program solve
 (All the answers are the same at the purpose level)
• Algorithm/Function
 Which algorithms or functions do students use 
• Implementation
 How do them implemented their algorithm

According to this idea, we developed a hierarchical labeling scheme 
that includes these three levels to understand the diverse strategies 
students use in their hands-on coding exercises.

Weight-based Agglomerative Clustering (WAC) method

An outlier in a coding solution refers to a submission that 
significantly deviates from the typical patterns found in a set of code 
solutions. Outliers often contain unnecessary or redundant code, 
which could indicate innovative approaches or misunderstandings. 
Thus, we introduced Weight-based Agglomerative Clustering (WAC) 
method that specifically designed for detecting outlier solutions.

Process Overview

• Embedding Transformation: The process begins by 
transforming code solutions into embeddings using Keywords 
Count Embedding, which, according to our testing result, is the 
best embedding for our outlier detection algorithm. This 
transformation converts each code solution into a data point, 
providing a numerical representation for further analysis.

• Agglomerative Clustering: Each data point as an initial 
cluster. The distance matrix is then constructed to 
quantify the differences between code solutions. The 
algorithm then merges the two closest clusters into a 
single cluster, updating the distance matrix to reflect the 
new cluster structure. This process is repeated iteratively, 
continuously merging clusters until all data points form a 
single cluster. The sequence of merges is recorded in a 
dendrogram, a tree-like diagram that visually represents 
the clustering process and the distances at which clusters 
were merged.

• Cluster Weight Calculation: After constructing the 
dendrogram, each cluster's weight is calculated. The 
weight of a cluster is defined as the vertical distance from 
the cluster to its parent node, divided by the square of the 
cluster's size. This weighting method helps identify 
clusters that are significantly distant from others but 
contain a smaller number of data points, indicating 
potential outliers.

• Outlier Identification: To identify outliers, the algorithm 
selects clusters with the highest weights. The expected 
number of outliers can be adjusted based on the 
instructor's needs. For example, if the instructor expects 
five outliers, the algorithm will select the five clusters with 
the highest weights. This flexibility allows instructors to 
tailor the outlier detection process to their specific 
requirements.

Interest in computer science has been growing, leading to 
increased enrollment in computer science courses. Hands-on 
coding exercises are a key component of these courses, 
allowing instructors to evaluate student understanding and 
track progress. Code clustering is an effective method for 
grading, providing collective feedback, and identifying 
common errors or unique solutions. Despite its benefits, 
existing research on code clustering has limitations, including 
subjective evaluations and a lack of focus on outlier 
detection. Our study assesses the accuracy and performance 
of three clustering methods and ChatGPT-4 using a newly 
created labeled dataset. In addition, we propose a new outlier 
detection algorithm, Weight-based Agglomerative Clustering 
(WAC), designed to identify unique or erroneous code 
solutions. We compared our algorithm's accuracy and 
performance with existing outlier detection methods. Our 
results demonstrate a clearer understanding of the 
effectiveness of the evaluated clustering methods. And the 
evaluation of our outlier detection algorithm indicating our 
method outperforms existing.
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Introduction
Computer science courses rely heavily on hands-on exercises to 
facilitate learning and evaluate student understanding. These 
exercises allow students to apply programming concepts in real-
world scenarios, offering a practical approach to mastering coding 
skills. Instructors and teaching assistants play a crucial role in 
guiding students through these exercises, providing feedback, and 
assessing their progress.
Teaching assistant systems and clustering methods are invaluable 
tools in this context, helping educators manage large classes and 
provide effective feedback. Clustering methods group similar code 
solutions, allowing instructors to offer collective feedback to 
students with common coding patterns. This approach streamlines 
the teaching process and reduces redundancy in feedback, making it 
easier for instructors to identify and address common errors or 
misunderstandings.
However, existing teaching assistant systems and clustering 
methods have limitations. Many rely on user studies to evaluate 
their effectiveness, with subjective assessments and surveys as the 
primary means of validation. These evaluations often lack 
quantitative metrics to measure the accuracy and reduces 
redundancy in feedback, making it easier for instructors to identify 
and address common errors or misunderstandings.

Abstract

The evaluation process involved assessing the accuracy and 
performance of various clustering methods and comparing the 
results. This study evaluated three clustering methods—Edit 
Distance, Walk Similarity, and Keywords Count Embedding—
along with ChatGPT-4, using a labeled dataset we created.
Training and Testing: The dataset was divided into training and 
testing subsets, with 66% used for training the clustering 
algorithms and the remaining 33% for testing. 
ChatGPT – 4 was provided with the description of each 
category but without any labeled sample and then was asked to 
classify students’ solutions.

Findings:
• important tradeoffs: While the keywords count embedding 

has the best overall F1, it requires initial efforts to set 
parameters

• Performance of Walk Similarity is significantly affected by 
the complexity of the label.

• Keywords Count Embeddings offer the best performance, 
making it ideal for real-time monitoring

• The runtime of the Edit Distance method demonstrates a 
significant increase as the number of students (N) grows.

Findings:
• DBSCAN and OPTICS are methods used by previous research 

on code clustering
• Isolation Forest is a classical outlier detection model
• Our model has the highest precision among the four models

Number of Students (N)

Algorithm N = 20 N = 30 N=40 N=50 N=60 N=70

Edit Distance 61.31 88.52 131.56 127.78 163.49 178.78

Walk Similarity 67.71 83.61 93.10 97.52 126.24 135.88

Keywords Count 
Embedding 0.23 0.24 0.34 0.41 0.44 0.53

Algorithm

Question 2 Question 3

Algorithm Level Implementation 
Level Algorithm Level Implementation 

Level

F1 Visual F1 Visual F1 Visual F1 Visual

Edit Distance 0.87 Normal 0.79 Best 0.71 Normal 0.23 Better

Walk Similarity 0.85 Better 0.49 Normal 0.78 Better 0.13 Normal
Keywords Count 

Embedding 0.97 Best 0.71 Better 0.89 Best 0.36 Best

ChatGPT-4 0.80 N/A 0.38 N/A 0.48 N/A N/A N/A

Result

F1 Score and Visual Evaluation of Different Clustering Methods

Runtime of Different Methods with Different Class Size

Objectives:
1. Created a labeled dataset and evaluated the accuracy and 
performance of three current clustering methods using 
different embeddings and Chat GPT.

2. Provided a new outlier detection algorithm and compared 
accuracy and performance with existing algorithms for 
detecting outliers

Labeling Scheme of Question 2
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Algorithm Precision Accuracy Outliers 
Detected True Positives Performance (ms)

WAC 0.93 0.93 15 14 769

DBSCAN 0.79 0.90 14 11 438

OPTICS 0.47 0.83 53 25 344

Isolation Forest 0.73 0.94 33 24 338
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