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Methodology

A potential explanation: spurious correlations “0”: [0,1,...,249],
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Potential Parallels Between Vision and Text
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(65M tokens; Self-supervised “°Q < Word types: Phrasal Structure: Token-to-token dependencies:
Generated text) Pretraining Self-supervised Finetuning
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FLAT less tolerant to more types and longer dependency arcs compared to NEST

GPT?2 GPT?2 (4) Evaluate perplexity
(lower the better)

No strong correlation between complexity and performance
Simple languages with few types and repetitive patterns are the most performant.

One-to-one dependencies deteriorate performance https://blogs.nvidia.com/blog/whats-the-difference-between-a-
cnn-and-an-rnn/
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