Priming: Multi-Stage Pretraining using Formal Languages with Ascending Complexity THE UNIVERSITY Tianyi Niu of NORTH CAROLINA at CHAPEL HILL

unclo	<pre>sed_stack = stack()</pre>
seque	ence = []
while	num_tokens < 65M:
C	pen = Bernoulli(0.49)
	T open == 1: y_{acch} token = y_{acch} (1 = 500)
	Vocab_token = uniform(1, 500)
ר	sequence.append(vocab_token)
-	unclosed_stack.add(vocab_token)
<u>'</u>	T open == 0:
	<pre>vocab_token = unclosed_stack.pop()</pre>
	sequence.append(vocab_token)
unclos	<pre>sed_list = list()</pre>
while	num tokens < $65M$:
or	pen = Bernoulli(0.49)
- i1	f open == 1:
	<pre>vocab_token = uniform(1, 500)</pre>
1	sequence.append(vocab_token)
if	f open == 0:
	<pre>vocab_token = shuffle(unclosed_stack).pop()</pre>
	<pre>sequence.append(vocab_token)</pre>
	Context-Sensitive
	Context Sensitive
	FLAT-MAXARC3:
	Same algorithm as FLAT
	limit maximum dependency
	arc length to 3
	FLAT-MAXARC5:
	Same algorithm as FLAT, limit
	maximum dependency arc
	length to 5
	BACH : 0 ⁿ 1 ⁿ 2 ⁿ 3 ⁿ
n	
	ΤΟΜ7 • 0+1+0+1+
	assignments = {
	"0": [0,1,,249],
, 1	"1": [250, 251,, 499]
12]	}
-	
	probabilities = {
	"0": [1/250, 1/250,, 1/250].
	"1": [1/250. 1/250/ 1/250]
100 257 2	90 }
400, 257, 2	89 }
400, 257, 2	89 }
400, 257, 2	89 }
400, 257, 2	89 }
400, 257, 2	89 }
400, 257, 2	89 }

efficient pretraining.

Procedure:

- (1) Prime for 500 steps
- (2) Pretrain for **1000** steps (3) Finetune on Wikitext103.
- (4) Evaluate perplexity
- (lower the better)

1. Priming allows for better language learning? **Yes and No**

Yes – When pretrained for a sufficient number of steps, priming on non-linguistic datasets generated from simple, repetitive patterns substantially improve performance.

No – When pretrained for a few steps, priming does not offer substantial gains over baselines. In fact, simple, repetitive patterns deteriorate performance.

2. Priming enable more efficient training? **Maybe**

Maybe - Perplexity on all language improve when pretrained for less steps, *including no* priming baseline.

Maybe – Checkpoints only taken at 1k and 5k steps & 1k may be overfitting FT dataset

Why and what is "sufficient number of steps?"

A potential explanation: spurious correlations between location and value:

0, 0, 0, 0, 1, 1, ..., 1, 0, 0, 1, 1, 1 [0:idx1] [Idx1:idx2] [Idx2:idx3] [Idx3:512]

"1": [1/250, 1/250, .../ 1/250] 123, 31, 13, 31, 386, 455, ..., 228, 21, 203, 400, 257, 289 In experiment 1 (pretrain 5k steps): • <u>Simple languages</u>: despite learning spurious correlations, the model later corrects itself and "overwrites" the spurious correlation, and learns more abstract patterns, leading to better

generalization

- In experiment 2 (pretrain 1k steps): • <u>Simple languages</u>: the model incorrectly learns the spurious correlation between location and token value.
- <u>T2T languages</u>: the model is primed then pretrained on the same (or similar) datasets, essentially adding 500 extra training steps

Potential Parallels Between Vision and Text

Convolutional Neural Network

Experiment 2

Objective: Investigate whether priming allows for more

Takeaways

- 1. Less pretraining steps results in lower perplexity and lower
- variance for all languages
- 2. Priming no longer outperforms baselines
- 3. Patterns found in Experiment 1 are no longer present
- 4. Pretrain T2T variants outperforms simple languages

Conclusions

Discussion

• <u>T2T languages</u>: despite extra training steps, the model does not generalize as well.

assignments =

"0": [0,1,...,249],

probabilities = {

"1": [250, 251, ..., 499]

"0": [1/250, 1/250, ..., 1/250],